Skip to main content
Log in

Controllable preparation of black titanium dioxide and its wave-absorbing properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The black TiO2 material was prepared by chemical reduction method, and the difference in structure and performance between black TiO2 and white TiO2 was discussed. At the same time, the effects of hydrogenation temperature and mass ratio factors on the formation and structure of black TiO2 were investigated. The results show that black TiO2 has a special structure: the existence of oxygen vacancies shortens the Ti–O bond, and the lattice shrinks. In addition, defects such as Ti3+ and Ti–OH are formed in the TiO2 crystal, which cause a disordered layer on the surface of the black TiO2 crystal. At the same time, the existence of defects such as oxygen vacancies and Ti3+ will make the valence and conduction bands of TiO2 appear tail bands. This greatly reduces the band gap and improves absorption. Considering the absorption effect and preparation cost comprehensively, the optimum conditions for the preparation of black TiO2 are that the hydrogenation temperature is 400 °C and the mass ratio of white TiO2 and NaBH4 is 2:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or used during the study appear in the submitted article.

References

  1. X. Chen, L. Liu, F. Huang, Chem Soc Rev. 44(7), 1861 (2015)

    Article  Google Scholar 

  2. S.G. Ullattil, S.B. Narendranath, S.C. Pillai, P. Periyat, Chem. Eng. J. 343, 708 (2018)

    Article  Google Scholar 

  3. U. Gökmen, Z. Özkan, S.B. Ocak, Phys. Scr. 96(12), 125326 (2021)

    Article  ADS  Google Scholar 

  4. S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, New J Chem. 40(4), 3000 (2016)

    Article  Google Scholar 

  5. R. Eglı̅tis, U. Joost, A. Zukuls, K. Rubenis, R. Ignata̅ns, L.G. Avotiņa, L. Baumane, K.N. Šmits, M. Hirsimäki, T. Käämbre, ACS Appl. Mater Inter. 12(51), 57609 (2020)

  6. Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. Int. Ed. 51(14), 3364 (2012)

    Article  Google Scholar 

  7. W. Li, A. Elzatahry, D. Aldhayan, D. Zhao, Chem Soc Rev. 47(22), 8203 (2018)

    Article  Google Scholar 

  8. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331(6018), 746 (2011)

    Article  ADS  Google Scholar 

  9. J.-Y. Shin, J.H. Joo, D. Samuelis, J. Maier, Chem Mater. 24(3), 543 (2012)

    Article  Google Scholar 

  10. H. He, K. Yang, N. Wang, F. Luo, H. Chen, J Appl Phys. 114(21), 213505 (2013)

    Article  ADS  Google Scholar 

  11. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, Adv. Func. Mater. 23(43), 5444 (2013)

    Article  Google Scholar 

  12. H. Li, Z. Chen, C.K. Tsang, Z. Li, X. Ran, C. Lee, B. Nie, L. Zheng, T. Hung, J. Lu, J Mater Chem A. 2(1), 229 (2014)

    Article  Google Scholar 

  13. C. Fan, C. Chen, J. Wang, X. Fu, Z. Ren, G. Qian, Z. Wang, Sci Rep-Uk. 5(1), 1 (2015)

    Google Scholar 

  14. S. Chen, Y. Xiao, Y. Wang, Z. Hu, H. Zhao, W. Xie, Nanomaterials Basel. 8(4), 245 (2018)

    Article  Google Scholar 

  15. L. Andronic, A. Enesca, Front. Chem. 8, 565489 (2020)

    Article  Google Scholar 

  16. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C Photochem. Rev. 25, 1 (2015)

    Article  Google Scholar 

  17. T. Xia, X. Chen, J Mater Chem A. 1(9), 2983 (2013)

    Article  Google Scholar 

  18. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Nanoscale 5(9), 3601 (2013)

    Article  ADS  Google Scholar 

  19. S.G. Ullattil, P. Periyat, J Mater Chem A. 4(16), 5854 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We are sincerely thankful to the support of the National Natural Science Foundation of China (Fund number: 11672041) and the support of the Beijing Institute of Technology Analysis and Testing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Bao, L., Jia, Q. et al. Controllable preparation of black titanium dioxide and its wave-absorbing properties. Appl. Phys. A 129, 119 (2023). https://doi.org/10.1007/s00339-022-06301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06301-6

Keywords

Navigation