Skip to main content
Log in

Structural, magnetic, optical, and photocatalytic properties of Bi1-xSmxFe1-yCryO3 nanostructure synthesized by hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, Bi1-xSmxFe1-yCryO3 (x = 0.0, 0.05, 0.1, y = 0.0, 0.01, 0.02, 0.03) nanostructures were prepared by hydrothermal method at 220 °C using the KOH concentration of 4 M during 6 h. X-ray diffraction analysis showed that the samples have a distorted rhombohedral perovskite structure with the symmetry of an R3c space group. The FT-IR spectrums of BiFeO3 and Bi1-xSmxFe1-yCryO3 are confirmed by the metal-oxide absorption bands that appeared at 400 cm−1–600 cm−1, which are the characteristic bands of FeO6 octahedral groups in the perovskite structure. FESEM images showed that the particle size has been decreased by doping the elements Sm and Cr. The magnetic properties of Bi1-xSmxFe1-yCryO3 have been improved compared to the undoped BiFeO3. The results of the magnetic properties showed that a maximum magnetization at 15 k Oe of BiFeO3 (0.148 emu/g) to Bi0.9Sm0.1Fe0.97Cr0.03O3 (1.895 emu/g) has been increased. The optical properties showed that the optical bandgap energy of samples with co-doping of Sm and Cr has been reduced from 2.8 to 2.1 eV. The results of PL analysis showed that the electron–hole recombination with an increase of the doping of Sm and Cr contents has been decreased which result in an effect on the photocatalytic performance. The Congo red (CR) degradation efficiency under visible light irradiation with increased co-doped Sm and Cr consents has been increased and the Congo red degradation rate followed the first-order Langmuir–Hinshelwood kinetics model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Schmid, Multi-ferroic magnetoelectric. Ferroelectrics 162, 317–338 (1994)

    Article  ADS  Google Scholar 

  2. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, Investigation of transport behavior in Ba doped BiFeO3. Ceram. Int. No. 38, 3829 (2012)

    Article  Google Scholar 

  3. G. Biasotto, A.Z. Simões, C. Foschini, A novel synthesis of perovskite bismuth ferrite nanoparticles. Process. Appl. Ceram. 5, 171–179 (2011)

    Article  Google Scholar 

  4. W. Wei, H. Xuan, L. Wang, Y. Zhang, K. Shen, The magnetoelectric coupling in rhombohedral–tetragonal phases coexisted Bi 0.84 Ba 0.2FeO3. Phys. B Conden. Mater. 407, 2243 (2012)

    Article  ADS  Google Scholar 

  5. Y. Sharma, R. Martinez, R. Agarwal, D. Barrionuevo, R.K. Katiyar, A. Kumar, R.S. Katiyar, Studies on structural, optical, magnetic, and resistive switching properties of doped BiFe1-xCrxO3 thin filmsm. J. Appl. Phys. 120, 194101 (2016)

    Article  ADS  Google Scholar 

  6. S.E. Mousavi Ghahfarokhi, M. Rahimi Larki, I. Kazeminezhad, Investigation of the Structural, Magnetic, Dielectric, and Optical Properties of Mn and Co-Doped BiFeO3 (Bi1−x Co x Fe 08 Mn 02 O3) Nanoparticles. IEEE Trans. Magn. 56(2), 1–9 (2020)

    Article  Google Scholar 

  7. T. Gao, Z. Chen, Q. Huang, F. Niu, X. Huang, L. Qin, Y. Huang, A Review Preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalyses. Rev. Adv. Mater. Sci. 40, 97–109 (2015)

    Google Scholar 

  8. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Sciences 299, 1719–1722 (2003)

    Article  Google Scholar 

  9. K.H. Wu, Y.C. Chang, T.C. Chang, Y.S. Chiu, T.R. Wu, Effect of SiO2 content and solution pH in raw materials on Ni-Zn ferrite magnetic properties. J. Magn. Magn. Mater. 283, 380–384 (2004)

    Article  ADS  Google Scholar 

  10. W. Wu, C.Z. Jiang, V.A. Roy, Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8, 19421–19474 (2016)

    Article  Google Scholar 

  11. D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, G. Sharma, Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods. Nanoscale 2, 1149–1154 (2010)

    Article  ADS  Google Scholar 

  12. C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)

    Article  Google Scholar 

  13. P.R. Vanga, R.V. Mangalaraja, N.V. Giridharan, M. Ashok, Influence of divalent Ni and trivalent Cr ions on the properties of ytterbium modified bismuth ferrite. J. Alloy. Compd. 684, 55–61 (2016)

    Article  Google Scholar 

  14. W. Mao, X. Wang, Y. Han, Y. Li, Y. Wang, Y. Ma, X. Feng, T. Yang, J. Yang, W. Huang, Effect of Ln (Ln= La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles. J. Alloy. Compd. 584, 520–523 (2014)

    Article  Google Scholar 

  15. K.G. Yang, Y.L. Zhang, S.H. Yang, B. Wang, Structural, electrical, and magnetic properties of multiferroic Bi1–xLaxFe1–yCoyO3 thin films. J. Appl. Phys. 107, 124109 (2010)

    Article  ADS  Google Scholar 

  16. G. Dong, G. Tan, W. Liu, A. Xia, H. Ren, Crystal structure and highly enhanced ferroelectric properties of (Tb, Cr) codoped BiFeO3 thin films fabricated by a sol–gel method. Ceram. Int. 40, 1919–1925 (2014)

    Article  Google Scholar 

  17. M. Gowrishankar, D.R. Babu, S. Madeswaran, Effect of Gd-Ti co-substitution on structural, magnetic and electrical properties of multiferroic BiFeO3. J. Magn. Mater. 418, 54–61 (2016)

    Article  ADS  Google Scholar 

  18. S. Godara, B. Kumar, Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 nanoparticles. Ceram. Int. 41, 6912–6919 (2015)

    Article  Google Scholar 

  19. S. Chauhan, M. Kumar, S. Chhoker et al., Structural modification and enhanced magnetic properties with two phonon modes in Ca–Co codoped BiFeO3 nanoparticles. Ceram. Int. 41, 14306–14314 (2015)

    Article  Google Scholar 

  20. S. Godara, N. Sinha, B. Kumar, Enhanced electric and magnetic properties in Ce–Cr co-doped bismuth ferrite nanostructure. Mater. Lett. 136, 441–444 (2014)

    Article  Google Scholar 

  21. K. Chakrabarti, K. Das, B. Sarkar et al., Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles. Appl. Phys. Lett. 101, 042401 (2012)

    Article  ADS  Google Scholar 

  22. A. Puhanl, B. Bhushan et al., Surface engineered Tb and Co co-doped BiFeO3 nanoparticles for enhanced photocatalytic and magnetic properties. J. Mater. Sci.: Mater Electron. 32, 7956–7972 (2021)

    Google Scholar 

  23. S. Wang, D. Chen, F. Niu, N. Zhang, L. Qin, Y. Huang, Pd cocatalyst on Sm-doped BiFeO3 nanoparticles: Synergetic effect of Pd cocatalyst and samarium doping on photocatalysis. RSC Adv. 6(41), 34574–34587 (2016)

    Article  ADS  Google Scholar 

  24. R. Das, G.G. Khan, K. Mandal, Enhanced ferroelectric, magnetoelectric, and magnetic properties in Pr and Cr co-doped BiFeO3 nanotubes fabricated by template assisted route. J. Appl. Phys. 111, 104115 (2012)

    Article  ADS  Google Scholar 

  25. S. Irfan, L. Li, A.S. Saleemi, C.W. Nan, Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 5, 11143–11151 (2017)

    Article  Google Scholar 

  26. S.E. Mousavi Ghahfarokhi, Kh. Helfi, M. Zargar Shoushtari, Synthesis of the single-phase bismuth ferrite (BiFeO3) nanoparticle and investigation of their structural, magnetic, optical and photocatalytic properties. Adv. J. Chem.-Sec. A. 5(1), 45–58 (2022)

    Google Scholar 

  27. A.P. Mouritz, Introduction to Aerospace Material (Elsevier, Sawston, 2012), pp.128–153

    Book  Google Scholar 

  28. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  29. P. Kumar, M. Kar, Effect of structural transition on magnetic and dielectric properties of La and Mn co-substituted BiFeO3 ceramics. Mater. Chem. Phys. 148(3), 968–977 (2014)

    Article  Google Scholar 

  30. M. Kamel Attar Kar, F. Manteghi, R. Fazaeli, (2015). Investigation of the effect of using organic surfactant in structural properties of CuFe2O4 nanoparticles. The 19th Int. Electronic Conference on Synthetic Organic Chemistry

  31. M. Kamel Attar Kar, F. Manteghi, R. Fazaeli (2015). Synthesis of NiFe2O4 nanoparticles by organic surfactants-assisted sol-gel auto-combustion method, characterization, and determination of band gap. The 19th Int. Electronic Conference on Synthetic Organic Chemistry

  32. Zh. Chen, W. Jin, Zh. Lu, Ferromagnetic and photocatalytic properties of pure BiFeO3 powders synthesized by ethylene glycol assisted hydrothermal. J. Mater. Sci. 26(2), 1077–1086 (2015)

    Google Scholar 

  33. S.E. Mousavi Ghahfarokhi, E. Mohammadzadeh Shobegar, An investigation of the ethylene glycol surfactant on the structural, microstructure, magnetic and optical properties of SrFe2O4 nanoparticles. J. Magn. Magn. Mater. 495, 165866 (2020)

    Article  Google Scholar 

  34. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    Article  ADS  Google Scholar 

  35. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, "Effect of Yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3. J. Phys. Condens. Matter. 20, 045218 (2008)

    Article  ADS  Google Scholar 

  36. M.S. Bernardo, T. Jardiel, M. Peiteado, F.J. Mompean, M. Garcia-Hernandez, M.A. Garcia, M. Villegas, A.C. Caballero, Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO3: microstructure development and multiferroic properties. Chem. Mater. 25, 1533–1541 (2013)

    Article  Google Scholar 

  37. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401–060405 (2005)

    Article  ADS  Google Scholar 

  38. I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  39. T. Moriya, Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  Google Scholar 

  40. I. Sosnowska, T. Peterlin-Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982)

    Article  ADS  Google Scholar 

  41. A. Puhan, A.K. Nayak, B. Bhushan, S. Praharaj, S.S. Meena, D. Rout, Enhanced electrical, magnetic and optical behavior of Cr doped Bi0.98Ho0.02FeO3 nanoparticles. J. Alloys Compd. 796, 229–236 (2019)

    Article  Google Scholar 

  42. M.H. Loghmani, A. Fallah Shojaei, Effect of preparation temperature and ions doping on size, morphology and catalytic activity of Co-B amorphous nano catalyst. Bull. Chem. Soc. Ethiop. 29(1), 105–116 (2015)

    Article  Google Scholar 

  43. F. Wang, X.K. Liu, F. Gao, Chapter 1 - fundamentals of solar cells and light-emitting diodes, in Advanced Nanomaterials for Solar Cells and Light Emitting Diodes. (Micro and Nano Technologies, Rajasthan, 2019), pp.1–35

    Google Scholar 

  44. A. Haruna, I. Abdulkadir, S.O. Idris, Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. Heliyon 6, e03237 (2020)

    Article  Google Scholar 

  45. Z. Abbasi, A. Farrokhnia, E.I. Garcia-Lopez et al., Synthesis of ZnO–Ag2CO3–Fe3O4@rGO core-shell structure: magnetically separable photocatalyst for degradation of MB using the Box-Behnken design. J. Mater. Sci.: Mater. Electron. 31, 19554–19568 (2020)

    Google Scholar 

  46. H. Wang, Y.H. Lin, Y. Feng, Y. Shen, Photocatalytic behaviors observed in Ba and Mn-doped BiFeO3nanofibers. J. Electroceram. 31, 271–274 (2013)

    Article  Google Scholar 

  47. Y. Feng, H. Wang, Y. Shen, Y. Lin, C. Nan, Magnetic and Photocatalytic Behaviors of Ca Mn Co-Doped BiFeO3 Nanofibres. Mod. Res. Catal. 2, 1–5 (2013)

    Article  Google Scholar 

  48. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002)

    Article  Google Scholar 

  49. M. Arora, M. Kumar, Structural, magnetic and optical properties of Ce substituted BiFeO3 nanoparticles. Ceram. Int. 41, 5705–5712 (2015)

    Article  Google Scholar 

  50. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J. Phys. Chem. Solids 75, 105–108 (2014)

    Article  ADS  Google Scholar 

  51. J.K. Reddy, B. Srinivas, V.D. Kumari, M. Subrahmanyam, Sm3+-doped Bi2O3 photocatalyst prepared by hydrothermal synthesis. ChemCatChem 1, 492–496 (2009)

    Article  Google Scholar 

  52. W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantumsized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 9, 13669–13679 (1994)

    Article  Google Scholar 

  53. I. Kazeminezhad, A. Sadollahkhani, Influence of pH on the photocatalytic activity of ZnO nanoparticles. J. Mater. Sci: Mater. Electron. 27, 4206–4215 (2016)

    Google Scholar 

  54. Y. Feng, H. Wang, Y. Shen, Y. Lin, C. Nan, Magnetic and photocatalytic behaviors of Ca Mn Co-doped BiFeO3 nanofibres. Mod. Res. Catal. 21(2), 1–5 (2013)

    Google Scholar 

  55. S. Irfan et al., The Gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 Nanoparticles as New Solar Light Active Photocatalyst. Sci. Rep. 7, 42493 (2017)

    Article  ADS  Google Scholar 

  56. S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2016). https://doi.org/10.1111/jace.14487

    Article  Google Scholar 

  57. S. Khezrianjoo, H.D. Revanasiddappa, Langmuir-hinshelwood kinetic expression for the photocatalytic degradation of metanil yellow aqueous solutions by ZnO catalyst. Chem. Sci. J. 2012(CSJ-85), 1–7 (2012).

    Google Scholar 

  58. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soci. Rev. 43(15), 5234–5244 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Shahid Chamran University of Ahvaz for supporting this research under grant number of SCU.SP1401.130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Mousavi Ghahfarokhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helfi, K., Mousavi Ghahfarokhi, S.E. & Zargar Shoushtari, M. Structural, magnetic, optical, and photocatalytic properties of Bi1-xSmxFe1-yCryO3 nanostructure synthesized by hydrothermal method. Appl. Phys. A 129, 40 (2023). https://doi.org/10.1007/s00339-022-06290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06290-6

Keywords

Navigation