Skip to main content

Advertisement

Log in

Twist-engineered tunability in vertical MoS2/MoSe2 heterostructure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) layered materials and its heterostructures grab a lot of attention because of their outstanding electronic properties for wide area of applications. In this work, the structural, mechanical, electronic and optical properties of a vertically stacked MoS\(_2\)/MoSe\(_2\) heterostructure have been studied using first-principles-based density functional theory (DFT) calculations. The relative rotation between the monolayers leads to the formation of beautiful Moiré patterns, specifically at a twist angle of \(21.79^\circ\) and \(30^\circ\). The low formation energy and Young’s modulus reflect the thermodynamic and mechanical stability of this heterostructure, respectively. Furthermore, there is a phase change from direct to indirect band-gap semiconductors, as well as band-gap modulation caused by interlayer coupling between the monolayers. We also observed that the optical sensitivity of the MoS\(_2\)/MoSe\(_2\) heterostructures is extremely enhanced at a twist angle of \(60^\circ\) in the visible and infrared regions as compared to its monolayers. The twist-assisted electronic and optical properties of this heterostructure open a novel route to design the 2D stacked nanostructures for next-generation nano- and opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)

    Article  ADS  Google Scholar 

  2. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 1–15 (2017)

    Article  Google Scholar 

  3. S.J. Ray, M.V. Kamalakar, Unconventional strain-dependent conductance oscillations in pristine phosphorene. Phys. Chem. Chem. Phys. 20(19), 13508–13516 (2018)

    Article  Google Scholar 

  4. S.J. Ray, M.V. Kamalakar, R. Chowdhury, Ab initio studies of phosphorene island single electron transistor. J. Phys. Condens. Matter 28(19), 195302 (2016)

    Article  ADS  Google Scholar 

  5. S. Rani, S.J. Ray, Detection of gas molecule using C3N island single electron transistor. Carbon 144, 235–240 (2019)

    Article  Google Scholar 

  6. P. Kumari, S. Majumder, S. Rani, A.K. Nair, K. Kumari, M.V. Kamalakar, S.J. Ray, High efficiency spin filtering in magnetic phosphorene. Phys. Chem. Chem. Phys. 22(10), 5893–5901 (2020)

    Article  Google Scholar 

  7. S. Kar, A.K. Nair, S.J. Ray, Supreme enhancement of ferromagnetism in a spontaneous-symmetry-broken 2D nanomagnet. J. Phys. D Appl. Phys. 54(10), 105001 (2020)

    Article  ADS  Google Scholar 

  8. A.K. Nair, S.J. Ray, Electronic phase-crossover and room temperature ferromagnetism in a two-dimensional (2D) spin lattice. RSC Adv. 11(2), 946–952 (2021)

    Article  ADS  Google Scholar 

  9. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS$_2$ transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  ADS  Google Scholar 

  10. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS$_2$: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  11. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, W. Junqiao, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe$_2$ versus MoS$_2$. Nano Lett. 12(11), 5576–5580 (2012)

    Article  ADS  Google Scholar 

  12. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  ADS  Google Scholar 

  13. S.J. Ray, First-principles study of MoS$_2$, phosphorene and graphene based single electron transistor for gas sensing applications. Sens. Actuators B Chem. 222, 492–498 (2016)

    Article  Google Scholar 

  14. B. Peng, Q. Li, X. Liang, P. Song, J. Li, K. He, D. Fu et al., Valley polarization of trions and magnetoresistance in heterostructures of MoS$_2$ and yttrium iron garnet. ACS Nano 11(12), 12257–12265 (2017)

    Article  Google Scholar 

  15. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)

    Article  Google Scholar 

  16. K.S. Novoselov, O.A. Mishchenko, O.A. Carvalho, AH Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016)

    Article  Google Scholar 

  17. S. Rani, S.J. Ray, DNA and RNA detection using graphene and hexagonal boron nitride based nanosensor. Carbon 173, 493–500 (2021)

    Article  Google Scholar 

  18. S. Carr, D. Massatt, S. Fang, P. Cazeaux, M. Luskin, E. Kaxiras, Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95(7), 075420 (2017)

    Article  ADS  Google Scholar 

  19. F. Gargiulo, O.V. Yazyev, Structural and electronic transformation in low-angle twisted bilayer graphene. 2D Mater 5(1), 015019 (2017)

    Article  Google Scholar 

  20. Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556(7699), 80–84 (2018)

    Article  ADS  Google Scholar 

  21. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699), 43–50 (2018)

    Article  ADS  Google Scholar 

  22. A.L. Sharpe, E.J. Fox, A.W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M.A. Kastner, D. Goldhaber-Gordon, Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365(6453), 605–608 (2019)

    Article  ADS  Google Scholar 

  23. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  ADS  Google Scholar 

  24. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  Google Scholar 

  25. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, M.E. Lee, QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32(1), 015901 (2019)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  27. M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110(11), 5029–5036 (1999)

    Article  ADS  Google Scholar 

  28. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  ADS  Google Scholar 

  29. K.F. Garrity, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2013)

    Article  Google Scholar 

  30. W.A. Harrison, Solid State Theory (McGraw-Hill, New York, 1970)

    Google Scholar 

  31. F. Wooten, Optical Properties of Solids, vol. 9 (Academic Press, New York, 1973), pp.803–804

    Google Scholar 

  32. D.A. Fitri, A. Purqon, Calculation study of electric properties on molybdenum disulfide by using density functional theory. J. Phys. Conf. Ser. 877(1), 012071 (2017)

    Article  Google Scholar 

  33. Y. Guo, Y. Ji, L.H. Dong, Y. Li, Electronic and optical properties of defective MoSe$_2$ repaired by halogen atoms from first-principles study. AIP Adv. 9(2), 025202 (2019)

    Article  ADS  Google Scholar 

  34. L. Dong, C.J. Nocedal, On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MATH  Google Scholar 

  35. S. Sachin, S. Rani, P. Kumari, S. Kar, S.J. Ray, Supporting information on ”Twist-engineered tunability in vertical MoS$_2$/MoSe$_2$ heterostructure”

  36. Y. Wang, R. Huang, F. Kong, B. Gao, G. Li, F. Liang, H. Guang, Tunable electronic and optical properties of the MoS$_2$/MoSe$_2$ heterostructure nanotubes. Superlattices Microstruct. 132, 106156 (2019)

    Article  Google Scholar 

  37. H.M. Hill, A.F. Rigosi, K.T. Rim, G.W. Flynn, T.F. Heinz, Band alignment in MoS$_2$/WS$_2$ transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 16(8), 4831–4837 (2016)

    Article  ADS  Google Scholar 

  38. L. Stefano, H.C.P. Movva, B. Fallahazad, K. Kim, A. Behroozi, T. Taniguchi, K. Watanabe, S.K. Banerjee, E. Tutuc, Large effective mass and interaction-enhanced Zeeman splitting of K-valley electrons in MoSe$_2$. Phys. Rev. B 97(20), 201407 (2018)

    Article  ADS  Google Scholar 

  39. S. Kar, S. Rani, S.J. Ray, Stimuli assisted electronic, magnetic and optical phase control in CrOBr monolayer. Phys. E Low Dimens. Syst. Nanostruct. 143, 115332 (2022)

    Article  Google Scholar 

  40. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349 (1952)

    Article  ADS  Google Scholar 

  41. S. Rani, A.K. Nair, M.V. Kamalakar, S.J. Ray, Spin-selective response tunability in two-dimensional nanomagnet. J. Phys. Condens. Matter 32(41), 415301 (2020)

    Article  Google Scholar 

  42. J.-W. Jiang, J.-S. Wang, B. Li, Young’s modulus of graphene: a molecular dynamics study. Phys. Rev. B 80(11), 113405 (2009)

    Article  ADS  Google Scholar 

  43. B. Akdim, R. Pachter, X. Duan, W.W. Adams, Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Phys. Rev. B 67(24), 245404 (2003)

    Article  ADS  Google Scholar 

  44. S. Woo, H.C. Park, Y.-W. Son, Poisson’s ratio in layered two-dimensional crystals. Phys. Rev. B 93(7), 075420 (2016)

    Article  ADS  Google Scholar 

  45. S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS$_2$. ACS Nano 5(12), 9703–9709 (2011)

    Article  Google Scholar 

  46. P. Junior, M. Lopes, C.M.V. de Araujo, J.M. De Sousa, R.T. de Sousa Junior, L.F.R. Junior, W.F. Giozza, L.A.R. Junior, On the elastic properties and fracture patterns of MoX$_2$ (X= S, Se, Te) membranes: a reactive molecular dynamics study. Condens. Matter 5(4), 73 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support received through the Department of Science and Technology, India through the INSPIRE scheme (Ref: DST/INSPIRE/04/2015/003087), ECR Grant (Ref: ECR/2017/002223), CRG Grant (Ref: CRG/2019/003289), and UGC-DAE Consortium for Scientific Research (Grant Ref: CSR-IC-263, CRS-M-321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Jyoti Ray.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 351 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachin, S., Rani, S., Kumari, P. et al. Twist-engineered tunability in vertical MoS2/MoSe2 heterostructure. Appl. Phys. A 129, 46 (2023). https://doi.org/10.1007/s00339-022-06282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06282-6

Keywords

Navigation