Skip to main content
Log in

Interfacial modification mechanism of ALD-SiO2/4H-SiC heterojunction by synergistic nitrogen–oxygen-atmosphere RTA

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the interfacial modification of the ALD-SiO2/4H-SiC heterojunction with synergistic nitrogen–oxygen-atmosphere (N2/O2) rapid thermal annealing (RTA) and its physical mechanism have been systematically studied. Atomic layer deposition (ALD) can effectively suppress the carbon clusters generation at the SiO2/4H-SiC heterojunction interface and RTA in the synergistic N2/O2 can further reduce the interface states density, the near-interface-oxide-trap (NIOT) density and the leakage current. Oxygen can repair carbon-related defects, and nitrogen helps passivate carbon-related traps and dangling bonds. The synergistic N2/O2 RTA can enhance the interfacial passivation efficiency by converting sp3 carbon clusters into sp2 phases. These demonstrate that the proposed synergistic N2/O2 RTA associated with SiO2 deposition by ALD is a potential way to substitute the conventional toxic nitrous oxides annealing and high-budget thermal oxidation, which promotes the property and reliability of SiC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support this study are available from the corresponding author upon reasonable request.

References

  1. P. Dong, P. Li, L. Zhang, H. Tan, Z. Hu, K. Zhou, Z. Li, X. Yu, J. Li, B. Huang, Phys. Rev. Appl. 15, 034007 (2021)

    Article  ADS  Google Scholar 

  2. Q. Wang, X. Cheng, L. Zheng, P. Ye, M. Li, L. Shen, J. Li, D. Zhang, Z. Gu, Y. Yu, Appl. Surf. Sci. 410, 326 (2017)

    Article  ADS  Google Scholar 

  3. T. Hosoi, D. Nagai, M. Sometani, Y. Katsu, H. Takeda, T. Shimura, M. Takei, H. Watanabe, Appl. Phys. Lett. 109, 182114 (2016)

    Article  ADS  Google Scholar 

  4. T. Ono, C.J. Kirkham, S. Saito, Y. Oshima, Phys. Rev. B 96, 115311 (2017)

    Article  ADS  Google Scholar 

  5. Y. Jia, H. Lv, Q. Song, X. Tang, L. Xiao, L. Wang, G. Tang, Y. Zhang, Y. Zhang, Appl. Surf. Sci. 397, 175 (2017)

    Article  ADS  Google Scholar 

  6. C. Yang, F. Zhang, Z. Yin, Y. Su, F. Qin, D. Wang, Appl. Surf. Sci. 488, 293 (2019)

    Article  ADS  Google Scholar 

  7. Y. Jia, H. Lv, X. Tang, C. Han, Q. Song, Y. Zhang, Y. Zhang, S. Dimitrijev, J. Han, D. Haasmann, J. Mater. Sci. Mater. Electron. 30, 10302 (2019)

    Article  Google Scholar 

  8. H. Yoshioka, T. Nakamura, T. Kimoto, J. Appl. Phys. 115, 014502 (2014)

    Article  ADS  Google Scholar 

  9. Y. Jia, H. Lv, X. Tang, Q. Song, Y. Zhang, Y. Zhang, S. Dimitrijev, J. Han, J. Mater. Sci. Mater. Electron. 29, 14292 (2018)

    Article  Google Scholar 

  10. W. Lu, L. Feldman, Y. Song, S. Dhar, W. Collins, W. Mitchel, J. Williams, Appl. Phys. Lett. 85, 3495 (2004)

    Article  ADS  Google Scholar 

  11. D. Dutta, D. De, D. Fan, S. Roy, G. Alfieri, M. Camarda, M. Amsler, J. Lehmann, H. Bartolf, S. Goedecker, Appl. Phys. Lett. 115, 101601 (2019)

    Article  ADS  Google Scholar 

  12. A. Chanthaphan, T. Hosoi, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, H. Watanabe, Appl. Phys. Lett. 100, 252103 (2012)

    Article  ADS  Google Scholar 

  13. A. Xiang, X. Xu, L. Zhang, Z. Li, J. Li, G. Dai, Appl. Phys. Lett. 112, 062101 (2018)

    Article  ADS  Google Scholar 

  14. D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, IEEE Electr. Device L. 31, 710 (2010)

    Article  ADS  Google Scholar 

  15. D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, H. Yano, I.E.E.E. Electr, Device L. 35, 1176 (2014)

    Article  Google Scholar 

  16. M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo, P. Godignon, Mat. Sci. Semicon. Proc. 78, 22 (2018)

    Article  Google Scholar 

  17. N. Yoshida, E. Waki, M. Arai, K. Yamasaki, J. Han, M. Takenaka, S. Takagi, Thin Sol. Films 557, 237 (2014)

    Article  ADS  Google Scholar 

  18. P. Zhao, Y. Liu, C. Tin, W. Zhu, J. Ahn, Microelectron. Eng. 83, 61 (2006)

    Article  Google Scholar 

  19. P. Fiorenza, L.K. Swanson, M. Vivona, F. Giannazzo, C. Bongiorno, S. Lorenti, A. Frazzetto, F. Roccaforte, Mater. Sci. Forum 778–780, 623 (2014)

    Article  Google Scholar 

  20. S. Nakazawa, T. Okuda, J. Suda, T. Nakamura, T. Kimoto, IEEE T. Electron. Dev. 62, 309 (2015)

    Article  ADS  Google Scholar 

  21. X. Yang, B. Lee, V. Misra, IEEE T. Electron. Dev. 63, 2826 (2016)

    Article  ADS  Google Scholar 

  22. J. Wilt, Y. Gong, M. Gong, F. Su, H. Xu, R. Sakidja, A. Elliot, R. Lu, S. Zhao, S. Han, J.Z. Wu, Phys. Rev. Appl. 7, 064022 (2017)

    Article  ADS  Google Scholar 

  23. G. Yazdi, T. Iakimov, R. Yakimova, Crystals 6, 53 (2016)

    Article  Google Scholar 

  24. P. Borowicz, T. Gutt, T. Małachowski, M. Latek, Diam. Relat. Mater. 20, 665 (2011)

    Article  ADS  Google Scholar 

  25. Z. Zhang, Z. Wang, Y. Guo, J. Robertson, Appl. Phys. Lett. 118, 031601 (2021)

    Article  ADS  Google Scholar 

  26. C. Yang, Z. Yin, F. Zhang, Y. Su, F. Qin, D. Wang, Appl. Surf. Sci. 513, 145837 (2020)

    Article  Google Scholar 

  27. X. Zhang, T. Matsumoto, U. Sakurai, T. Makino, M. Ogura, M. Sometani, S. Yamasaki, C.E. Nebel, T. Inokuma, N. Tokuda, Appl. Phys. Lett. 117, 092104 (2020)

    Article  ADS  Google Scholar 

  28. S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, B. Shen, K.J. Chen, Appl. Phys. Lett. 106, 051605 (2015)

    Article  ADS  Google Scholar 

  29. R.H. Kikuchi, K. Kita, Appl. Phys. Lett. 105, 032106 (2014)

    Article  ADS  Google Scholar 

  30. M. Wang, M. Yang, W. Liu, J. Qi, S. Yang, C. Han, L. Geng, Y. Hao, IEEE T. Electron. Dev. 68, 1841 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFB3604300, 2022YFB3604301), National Natural Science Foundation of China (Grant No. 11705263), Shanghai Rising-Star Program (21QA1410900), the Science and Technology Commission of Shanghai Municipality (Grant Nos. 20501110900 and 20501110800) and Shanghai Sailing Program (Grant No. 20YF1456700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zheng or Xinhong Cheng.

Ethics declarations

Conflict of interest

The authors state that they have no known competing financial interests or personal ties that could have influenced the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Zheng, L., Cheng, X. et al. Interfacial modification mechanism of ALD-SiO2/4H-SiC heterojunction by synergistic nitrogen–oxygen-atmosphere RTA. Appl. Phys. A 128, 1132 (2022). https://doi.org/10.1007/s00339-022-06280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06280-8

Keywords

Navigation