Skip to main content
Log in

Intensity and wavelength-dependent two-photon absorption and its saturation in ITO film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Third-order nonlinear optical (NLO) properties of indium tin oxide (ITO) thin film were studied using high repetition rate (80 MHz), femtosecond (100 fs), and near-infrared (NIR) (750–820 nm) laser pulses. An ITO thin film was prepared using an RF magnetron sputtering system. The film thickness was determined using a scanning electron microscope (SEM), while the linear optical properties of the thin film were measured using a UV–Vis spectrophotometer. Nonlinear absorption (NLA) studies of ITO thin film using an open aperture Z-scan revealed a combination of nonlinear phenomena: reverse saturable absorption (RSA) and saturable absorption (SA). A saturation model has been used to explain the observed saturation of two-photon absorption (2PA) at high incident powers. The ITO film's NLA properties were found to be excitation power and wavelength dependent. The NLA coefficient was shown to be inversely proportional to the excitation power and wavelength. Furthermore, NLA measurements of ITO thin films show that the transition from RSA to RSA-SA-RSA switching behavior was influenced by ITO thickness. Because of their high third-order nonlinear optical responses, these ITO thin films are ideal candidates for photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R.A. Ganeev, Nonlinear optical properties of materials (Springer, New York, 2013), p.174

    Book  Google Scholar 

  2. X. Tian, R. Wei, Q. Guo, Y.J. Zhao, J. Qiu, Adv. Mater. 30(28), 1801638 (2018)

    Article  Google Scholar 

  3. J.M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.L. Brédas, S.R. Marder, Science 327(5972), 1485–1488 (2010)

    Article  ADS  Google Scholar 

  4. S. Mukhopadhyay, C. Risko, S.R. Marder, J.L. Brédas, Chem. Sci. 3(10), 3103–3112 (2012)

    Article  Google Scholar 

  5. X. Liu, Q. Guo, J. Qiu, Adv. Mater. 29(14), 1605886 (2017)

    Article  Google Scholar 

  6. Q. Guo, Y. Yao, Z.C. Luo, Z. Qin, G. Xie, M. Liu, J. Qiu, ACS nano. 10(10), 9463–9469 (2016)

    Article  Google Scholar 

  7. W. Min, C.W. Freudiger, S. Lu, X.S. Xie, Annu. Rev. Phys. Chem. 62, 507–530 (2011)

    Article  ADS  Google Scholar 

  8. A.S. Reyna, I. Russier-Antoine, F. Bertorelle, E. Benichou, P. Dugourd, R. Antoine, C.B. de Araújo, Phys. Chem. C 122(32), 18682–18689 (2018)

    Article  Google Scholar 

  9. M. Göppert-Mayer, Über Elementarakte Mit Zwei Quantensprüngen. Ann. Phys. 401, 273–294 (1931)

    Article  MATH  Google Scholar 

  10. W.K.C. Garrett, W. Kaiser, Two-Photon Excitation in Caf2: Eu2+. Phys. Rev. Lett 7, 229–231 (1961)

    Article  ADS  Google Scholar 

  11. J. Lott, C. Ryan, B. Valle, J.R. Johnson III., D.A. Schiraldi, J. Shan, K.D. Singer, C. Weder, Two-photon 3d optical data storage via aggregate switching of excimer-forming dyes. Adv. Mater. 23, 2425–2429 (2011)

    Article  Google Scholar 

  12. Z. Giedraityte, M. Tuomisto, M. Lastusaari, M. Karppinen, Three-and two-photon Nir-to-Vis (Yb, Er) upconversion from Ald/Mld-Fabricated molecular hybrid thin films. ACS Appl. Mater. Interfaces 10, 8845–8852 (2018)

    Article  Google Scholar 

  13. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagen, E.W. Van Stryland, IEEE J. Quantum Electron 26, 760 (1990)

    Article  ADS  Google Scholar 

  14. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60(11), R123–R160 (1986)

    Article  ADS  Google Scholar 

  15. S.Y. Lien, Thin Solid Films 518(21), S10–S13 (2010)

    Article  ADS  Google Scholar 

  16. C.W. Lin, H.I. Chen, T.Y. Chen, C.C. Huang, C.S. Hsu, R.C. Liu, W.C. Liu, Sensors and Actuators B: Chem. 160(1), 1481–1484 (2011)

    Article  Google Scholar 

  17. H. Kim, M.D. Kumar, M. Patel, J. Kim, Mater. Res. Bull. 83, 35–40 (2016)

    Article  Google Scholar 

  18. M. Clerici, N. Kinsey, C. DeVault, J. Kim, E.G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, M. Ferrera, Nat. Commun. 8, 15829 (2017)

    Article  ADS  Google Scholar 

  19. Q. Guo, J. Pan, D. Li, Y. Shen, X. Han, J. Gao, B. Man, H. Zhang, S. Jiang, Nanomaterials 9, 701 (2019)

    Article  Google Scholar 

  20. Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, H.A. Hosono, Adv. Mater 29, 1700754 (2017)

    Article  Google Scholar 

  21. Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, … & Y. Chen, Carbon 47(13), 3113–3121 (2009)

    Article  Google Scholar 

  22. P. Barquinha, R. Martins, L. Pereira, E. Fortunato, Transparent oxide electronics: from materials to devices (John Wiley & Sons, New Jersey, 2012)

    Book  Google Scholar 

  23. J.W. Park, G. Kim, S.H. Lee, E.H. Kim, G.H. Lee, Surf. Coat. Technol. 205, 915–921 (2010)

    Article  Google Scholar 

  24. M.H. Jung, H.S. Choi, Colloid and interface sci. 310(2), 550–558 (2007)

    Article  ADS  Google Scholar 

  25. S.M. Park, K. Ebihara, T. Ikegami, B.J. Lee, K.B. Lim, P.K. Shin, Current Appl Phys. 7(5), 474–479 (2007)

    Article  ADS  Google Scholar 

  26. A. Pokaipisit, M. Horprathum, P. Limsuwan, Agriculture Nat Res. 41(5), 255–261 (2007)

    Google Scholar 

  27. Z. Ma, Z. Li, K. Liu, C. Ye, V.J. Sorger, Nanophotonics 4(2), 198–213 (2015)

    Article  Google Scholar 

  28. G. Giusti, Deposition and characterization of functional ITO thin films (Doctoral dissertation, University of Birmingham) (2011).‏

  29. A. Pokaipisit, M. Horprathum, P. Limsuwan, Agriculture Nat Res. 42(5), 362–366 (2008)

    Google Scholar 

  30. A.N. Gheymasia, Y. Rajabia, E.N. Zareb, Nonlinear optical properties of poly(aniline-co-pyrrole)@ ZnO-based nanofluid. Opt. Mater. 102, 109835 (2020)

    Article  Google Scholar 

  31. X. Jiang, H. Lu, Q. Li, H. Zhou, S. Zhang, H. Zhang, Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm. Nanophotonics 7(11), 1835–1843 (2018)

    Article  Google Scholar 

  32. S.R. Flom, G. Beadie, S.S. Bayya, B. Shaw, J.M. Auxier, Ultrafast Z-scan measurements of nonlinear optical constants of window materials at 772, 1030, and 1550 nm. Appl. Opt. 54(31), F123–F128 (2015)

    Article  Google Scholar 

  33. P. Guo, R.D. Schaller, L.E. Ocola, B.T. Diroll, J.B. Ketterson, R.P. Chang, Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nat. Commun. 7(12892), 1–1289210 (2016)

    Google Scholar 

  34. A. Alizadeh, Y. Rajabi, M.M. Bagheri-Mohagheghi, Effect of crystallinity on the nonlinear optical properties of indium–tin oxide thin films. Opt. Mater. 131, 112589 (2022)

    Article  Google Scholar 

  35. L. Caspani et al., Enhanced nonlinear refractive index in ε -Near-Zero materials. Phys. Rev. Lett. 116, 23 (2016)

    Article  Google Scholar 

  36. M. Abb, P. Albella, J. Aizpurua, O.L. Muskens, All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett. 11(6), 2457–2463 (2011)

    Article  ADS  Google Scholar 

  37. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6(11), 737–748 (2012)

    Article  ADS  Google Scholar 

  38. Z.M. Zhang, J.J. Liu, Q.D. Hao, J. Liu, Appl. Phys. Express 12, 065504 (2019)

    Article  ADS  Google Scholar 

  39. Q.H. Xiao, X.Y. Feng, W. Yang, Y.K. Lin, Q.Q. Peng, S.Z. Jiang, J. Liu, L.B. Su, Laser Phys. 30, 055802 (2020)

    Article  ADS  Google Scholar 

  40. P. Guo, R.D. Schaller, J.B. Ketterson, R.P.H. Chang, Nat. Photonics 10, 267–273 (2016)

    Article  ADS  Google Scholar 

  41. J.B. Khurgin, M. Clerici, V. Bruno, L. Caspani, C. DeVault, J. Kim, A. Shaltout, A. Boltasseva, V.M. Shalaev, M. Ferrera, D. Faccio, N. Kinsey, Optica 7, 226–231 (2020)

    Article  ADS  Google Scholar 

  42. S. Kumar, E.S. Shibu, T. Pradeep, A.K. Sood, Opt. Express 21, 8483–8492 (2013)

    Article  ADS  Google Scholar 

  43. T. Yan, R. Hong, C. Tao, Q. Wang, H. Lin, Z. Han, D. Zhang, Opt. Mater. 125, 112061 (2022)

    Article  Google Scholar 

  44. M. Ali, A. Shehata, M. Ashour, W.Z. Tawfik, R. Schuch, T. Mohamed, Opt. Soc. Am. B 37, A139–A146 (2020)

    Article  ADS  Google Scholar 

  45. M.S. Huh, B.S. Yang, J. Song, J. Heo, S.J. Won, J.K. Jeong, C.S. Hwang, H.J. Kim, Electrochem. Soc. 156(1), J6–J11 (2009)

    Article  Google Scholar 

  46. J. Tauc, Optical properties of amorphous semiconductors. In Amorphous and liquid semiconductors (pp. 159–220). Springer, Boston, MA (1974).‏

  47. A. Eshaghi, A. Graeli, Optik 125, 1478–1481 (2013)

    Article  ADS  Google Scholar 

  48. F.A. Samad, A. Mahmoud, M.S. Abdel-Wahab, W.Z. Tawfik, R. Zakaria, V.R. Soma, T. Mohamed, JOSA B 39(5), 1388–1399 (2022)

    Article  ADS  Google Scholar 

  49. A. Jilani, M.S. Abdel-Wahab, A.A. Al-ghamdi, A. Sadik Dahlan, I.S. Yahia, Phys. B: Condens Matter 481, 97–103 (2016)

    Article  ADS  Google Scholar 

  50. G. Adomian, Math. Anal. Appl. 135(2), 501–544 (1988)

    Article  Google Scholar 

  51. J. He, J. Mi, H. Li, W. Ji, Phys. Chem. B 109(41), 19184–19187 (2005)

    Article  Google Scholar 

  52. L. Yang, R. Dorsinville, Q.Z. Wang, P.X. Ye, R.R. Alfano, Opt. Lett. 17, 323–325 (1992)

    Article  ADS  Google Scholar 

  53. S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, D. Zhu, Opt. Commun. 203(3–6), 283–288 (2002)

    Article  ADS  Google Scholar 

  54. Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, Y. Song, Opt. Commun. 251, 429–433 (2005)

    Article  ADS  Google Scholar 

  55. J.F. Lami, P. Gilliot, C. Hirlimann, Phys. Rev. Lett. 77(8), 1632 (1996)

    Article  ADS  Google Scholar 

  56. I. Papagiannouli, D. Potamianos, T. Krasia-Christoforou, S. Couris, Opt. Mater. 72, 226–232 (2017)

    Article  ADS  Google Scholar 

  57. J. Qiao, M.Y. Chuang, J.C. Lan, Y.Y. Lin, W.H. Sung, R. Fan, C.K. Lee, J. Mater. Chem. C 7(23), 7027–7034 (2019)

    Article  Google Scholar 

  58. A. Gaur, H. Syed, B. Yendeti, V.R. Soma, JOSA B 35(11), 2906–2914 (2018)

    Article  ADS  Google Scholar 

  59. C. Chen, J. Wang, Y. Gao, Appl. Sci. 11(4), 1640 (2021)

    Article  Google Scholar 

  60. J. Wang, B. Gu, X.W. Ni, H.T. Wang, Opt. Laser Technol. 44, 390–393 (2012)

    Article  ADS  Google Scholar 

  61. Q. Ouyang, H. Yu, Z. Xu, Y. Zhang, C. Li, L. Qi, Y. Chen, Appl. Phys. Lett. 102, 31912 (2013)

    Article  Google Scholar 

  62. A. Shehata, W.Z. Tawfik, T. Mohamed, J. Opt. Soc. Am. B 37, A1–A8 (2020)

    Article  ADS  Google Scholar 

  63. B. Johnsa, N.M. Puthoor, H. Gopalakrishnan, A. Mishra, R. Pant, J. Mitraa, J. Appl. Phys. 127, 043102 (2020)

    Article  ADS  Google Scholar 

  64. D.J. Li, Z.G. Gu, J. Zhang, Chem. Sci. 11(7), 1935–1942 (2020)

    Article  Google Scholar 

  65. A. Shehata, M. Ali, R. Schuch, T. Mohamed, Opt. Laser Technol. 116, 276–283 (2019)

    Article  ADS  Google Scholar 

  66. J.L. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, J.J. Vittal, New J. Chem. 38(3), 985–992 (2014)

    Article  Google Scholar 

  67. T.C. Sabari Girisun, M. Saravanan, S. Venugopal Rao, SN Appl Sci. 1(5), 1–14 (2019)

    Article  Google Scholar 

  68. N. Venkatram, D.N. Rao, M.A. Akundi, Opt. Express 13(3), 867–872 (2005)

    Article  ADS  Google Scholar 

  69. C.C. Evans, J.D.B. Bradley, E.A. Martí-Panameño, E. Mazur, Opt. Express 20, 3118–3128 (2012)

    Article  ADS  Google Scholar 

  70. Z.B. Liu, Y.F. Xu, X.Y. Zhang, X.L. Zhang, Y.S. Chen, J.G. Tian, Phys. Chem. B 113(29), 9681–9686 (2009)

    Article  Google Scholar 

  71. X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, X. Xu, J. Lightwave Technol. 36, 5130–5136 (2018)

    Article  ADS  Google Scholar 

  72. H. Ma, Y. Zhao, Y. Shao, Y. Lian, W. Zhang, G. Hu, J. Shao, Photonics Res. 9(5), 678–686 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Science and Technology Development Fund (STDF) through the Basic Sciences Research Program (30147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Mohamed.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samad, F.A., Mohamed, T. Intensity and wavelength-dependent two-photon absorption and its saturation in ITO film. Appl. Phys. A 129, 31 (2023). https://doi.org/10.1007/s00339-022-06259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06259-5

Keywords

Navigation