Skip to main content
Log in

Polyethylene glycol capped nickel–zinc ferrite nanocomposites: structural, optical and magnetic properties suitable for hyperthermia applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To maximize the properties of nickel–zinc ferrite nanoparticles (NiZnFNPs), a bioinspired procedure was employed with polyethylene glycol as a capping agent. The produced NiZnFNP was a single phase with crystalline diameters ranging from 22.8 to 35.9 nm, according to XRD, SEM, DRS, FTIR, and VSM characterization data. The addition of PEG improved the spherical morphology of NiZnFNPs, which possessed a spherical morphology with considerable agglomeration. The structure of the hysteresis loop shows that our sample transitioned from ferromagnetic to superparamagnetic nature for 2 g-PEG_NiZnFNPs and low ferromagnetic nature for 4 g-PEG_NiZnFNPs samples. The 2 g-PEG_NiZnFNP was employed for self-heating analysis in hyperthermia (HP) at 165 Oe applied field. It generated enough heat to achieve maximum temperature within the therapeutic temperature range in 300 s. The heating temperature was found to be lower when PEG was added. Owing to the obtained properties of NiZnFNP, is highly auspicious for HP applications with fewer side effects due to their biocompatibility and moderate temperature within the therapeutic range. The heating temperature was found to be lower when PEG was added. The assessed SLP was very high, making it an ideal material for hyperthermia applications. It is noteworthy that the 2 g-PEG induced the properties of the sample better and made it suitable for moderate hyperthermia applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. F. Reyes-Ortega, Á.V. Delgado, G.R. Iglesias, Modulation of the magnetic hyperthermia response using different superparamagnetic iron oxide nanoparticle morphologies. Nanomaterials 11, 627 (2021)

    Google Scholar 

  2. G.R. Iglesias, Y. Jabalera, A. Peigneux, B.L.C. Fernández, Á.V. Delgado, C. Jimenez-Lopez, Enhancement of magnetic hyperthermia by mixing synthetic inorganic and biomimetic magnetic nanoparticles. Pharmaceutics 11, 273 (2019)

    Google Scholar 

  3. Y. Jabalera, A. Sola-Leyva, A. Peigneux, F. Vurro, G.R. Iglesias, J. Vilchez-Garcia, I. Pérez-Prieto, F.J. Aguilar-Troyano, L.C. López-Cara, M.P. Carrasco-Jiménez, C. Jimenez-Lopez, Biomimetic magnetic nanocarriers drive choline kinase alpha inhibitor inside cancer cells for combined chemo-hyperthermia therapy. Pharmaceutics 11, 408 (2019)

    Google Scholar 

  4. F. Reyes-Ortega, Á.V. Delgado, E.K. Schneider, B.L.C. Fernández, G.R. Iglesias, Magnetic nanoparticles coated with a thermosensitive polymer with hyperthermia properties. Polymers 10, 10 (2018)

    Google Scholar 

  5. G.R. Iglesias, F. Reyes-Ortega, B.L.C. Fernandez, Á.V. Delgado, Hyperthermia-triggered gemcitabine release from polymer-coated magnetite nanoparticles. Polymers 10, 269 (2018)

    Google Scholar 

  6. O.A. Onyedikachi, S.O. Aisida, A. Agbogu, I. Rufus, I. Ahmad, M. Maaza, F.I. Ezema, Zinc ferrite nanoparticles capped with Gongronema latifolium for moderate hyperthermia applications. Appl. Phys. A 128, 95 (2022)

    ADS  Google Scholar 

  7. G. Hegyi, G. Szigeti, A. Szász, Hyperthermia versus oncothermia: cellular effects in complementary cancer therapy. Evidence Based Complement. Altern. Med. 7, 338–341 (2013)

    Google Scholar 

  8. J. Van der Zee, Heating the patient: A promising approach? Ann. Oncol. 13, 1173–1184 (2002)

    Google Scholar 

  9. M. Falk, R. Issels, Hyperthermia in oncology. Int. J. Hyperthermia 17(1), 1–18 (2001)

    Google Scholar 

  10. L. Sharif-Khatibi, A. Kariminia, S. Khoei, B. Goliaei, Hyperthermia induces differentiation without apoptosis in permissive temperatures in human erythroleukaemia cells. Int. J. Hyperthermia 23(8), 645–655 (2007)

    Google Scholar 

  11. Y. Jabalera, A. Sola-Leyva, S.C. Gaglio, M.P. Carrasco-Jiménez, G.R. Iglesias, M. Perduca, C. Jimenez-Lopez, Enhanced cytotoxic effect of TAT–PLGA-embedded DOXO carried by biomimetic magnetic nanoparticles upon combination with magnetic hyperthermia and photothermia. Pharmaceutics 13, 1168 (2021)

    Google Scholar 

  12. P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 487–497 (2002)

    Google Scholar 

  13. M. Rubi, A. Hernández, L. Salas, High temperature hyperthermia in breast cancer treatment. Hyperthermia 2013, 83–100 (2013)

    Google Scholar 

  14. F. Oltolina, A. Peigneux, D. Colangelo, N. Clemente, A. D’Urso, G. Valente, G.R. Iglesias, C. Jiménez-Lopez, M. Prat, Biomimetic magnetite nanoparticles as targeted drug nanocarriers and mediators of hyperthermia in an experimental cancer model. Cancers 12, 2564 (2020)

    Google Scholar 

  15. A. Feldman, S. Libutti, J. Pingpank, D. Bartlett, T. Beresnev, S. Mavroukakis, Analysis of factors associated with outcome in patients with malignant peritoneal mesothelioma undergoing surgical debulkingand intraperitoneal chemotherapy. J. Clin. Oncol. 21(24), 4560–4567 (2003)

    Google Scholar 

  16. A. Januszewski, J. Stebbing, Hyperthermia in cancer: Is it coming of age? Lancet Oncol. 15, 565–566 (2014)

    Google Scholar 

  17. S. Hoque, M. Hossain, S. Choudhury, S. Akhter, F. Hyder, Synthesis and characterization of zinc ferrite nanoparticles and its biomedical applications. Mater. Lett. 162, 60–63 (2016)

    Google Scholar 

  18. T. Zargar, A. Kermanpur, Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications. Ceram. Int. 43, 5794–5804 (2017)

    Google Scholar 

  19. S.O. Aisida, A. Ali, O.E. Oyewande, I. Ahmad, A. Ul-Hamid, T. Zhao, M. Maaza, F.I. Ezema, Biogenic synthesis enhanced structural, morphological, magnetic and optical properties of zinc ferrite nanoparticles for moderate hyperthermia applications. J. Nanopart. Res. 23, 47 (2021)

    ADS  Google Scholar 

  20. B.D. Fahlman, Mater. Chem. 2007, 282–283 (2007)

    Google Scholar 

  21. T. Dippong, E.A. Levei, O. Cadar, Formation, structure and magnetic properties of MFe2O4@SiO2 (M = Co, Mn, Zn, Ni, Cu) nanocomposites. Materials 14, 1139 (2021)

    ADS  Google Scholar 

  22. M.B. Shyamaldas, C. Manoharan, Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 493, 165703 (2020)

    Google Scholar 

  23. Y. Gao, Z. Wang, J. Pei, H. Zhang, Structure and magnetic properties correlated with cation distribution ofNi0.5xMoxZn0.5Fe2O4 ferrites prepared by sol–gel auto-combustion method. Ceram. Int. 44, 20148–2015320149 (2018)

    Google Scholar 

  24. V. Pilla, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 243–248, 163 (1996)

    Google Scholar 

  25. N. Madubuonu, S.O. Aisida, A. Ali, I. Ahmad, Z. Ting-kai, S. Botha, M. Maaza, F.I. Ezema, Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavajaMoringa oleifera and their antibacterial and photocatalytic study. J. Photochem. Photobiol. B 199, 111601 (2019)

    Google Scholar 

  26. A.C. French, A.L. Thompson, B.G. Davis, High purity discrete PEG oligomer crystals allow structural insight (PDF). Angew. Chem. Int. Ed. 48(7), 1248–1252 (2009)

    Google Scholar 

  27. S.O. Aisida, M.H. Alnasir, B.S.A.K.H. Bashir, R. Bucher, I. Ahmed, T. Zhao, M. Maaza, F.I. Ezema, The role polyethylene glycol on the microstructural, magnetic and specific absorption rate in thermoablation properties of Mn–Zn ferrite nanoparticles by sol–gel protocol. Eur. Polym. J. 132, 1 (2020)

    Google Scholar 

  28. P. Thandapani, M.R. Viswanathan, J.C. Denardin, Magnetocaloric effect and universal curve behavior in superparamagnetic zinc ferrite nanoparticles synthesized via microwave assisted co-precipitation method. Phys. Status Solidi 215(11), 1700842 (2018)

    ADS  Google Scholar 

  29. S.O. Aisidaa, A. Batool, F.M. Khanf, L. Rahmanf, A. Mahmoodg, I. Ahmadb, T.-K. Zhaoh, M. Maaza, F.I. Ezema, Calcination induced PEG–Ni–ZnO nanorod composite and its biomedical applications. Mater. Chem. Phys. 255, 123603 (2020)

    Google Scholar 

  30. B. Cullity, Elements of X-ray Diffraction, vol. 102, 2nd edn. (Addison-Wesley, London, 1978)

    MATH  Google Scholar 

  31. S.O. Aisida, M.H. Alnasir, S. Botha, A.K. Bashir, R.A.I. Bucher, F.I. Ezema, The role of polyethylene glycol on the microstructural, magnetic and specific absorption rate in thermoablation properties of Mn–Zn ferrite nanoparticles by sol–gel protocol. Eur. Polym. J. 109739, 132 (2020)

    Google Scholar 

  32. S.O. Aisida, N. Madubuonu, M.H. Alnasir, I. Ahmad, S. Botha, M. Maaza, F.I. Ezema, Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci. 10, 305–315 (2020)

    ADS  Google Scholar 

  33. A. Ghasemi, M. Reza, S.T. Loghman-Estarki, M. Tavoosi, The microstructure and magnetic behavior of spark plasma sintered iron/nickel zinc ferrite nanocomposite synthesized by the complex sol–gel method. Compos. Part B Eng. 175, 107179 (2019)

    Google Scholar 

  34. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256–1266 (2018)

    Google Scholar 

  35. N.P. Barde, S.S. Shewale, P.S. Solanki, N.A. Shah, P.P. Bardapurkar, Effect of silica matrix on structural optical and electrical properties of LiFeO4 nanoparticles. Scr. Mater. 194, 113712 (2021)

    Google Scholar 

  36. M. Ognjanovic, D.M. Stankovic, Y. Ming, H. Zhang, B. Jancar, B. Dojcinovic, Z. Prijovic, B. Antic, Bifunctional (Zn, Fe)3O4 nanoparticles: tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia. J. Alloys Compd. 777, 454–462 (2019)

    Google Scholar 

  37. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, L. Diamandescu, L. Barbu-Tudoran, Influence of cobalt ferrite content on the structure and magnetic properties of (CoFe2O4)X (SiO2–PVA)100-X nanocomposites. Ceram. Int. 44(7), 7891–7901 (2018)

    Google Scholar 

  38. G.R. Gordani, M.R.L. Estarki, E. Kiani, S. Torkian, The effects of strontium ferrite micro-and nanoparticles on the microstructure, phase, magnetic properties, and electromagnetic waves absorption of graphene oxide-SrFe12O19-SiC aerogel nanocomposite. J. Magn. Magn. Mater. 545, 168667545 (2022)

    Google Scholar 

  39. M. Loghman-Estarki, S. Torkian, R.A. Rastabi, A. Ghasemi, Effect of annealing temperature and copper mole ratio on the morphology, structure and magnetic properties of Mg0.5xCuxZn0.5Fe2O4 nanoparticles prepared by the modified Pechini method. J. Magn. Magn. Mater. 442, 163–175 (2017)

    ADS  Google Scholar 

  40. A. Ghasemi, M.R. Loghman-Estarki, S. Torkian, M. Tavoosi, The microstructure and magnetic behavior of spark plasma sintered iron/nickel zinc ferrite nanocomposite synthesized by the complex sol–gel method. Compos. Part B Eng. 175, 107179 (2019)

    Google Scholar 

  41. S.O. Aisida, P.A. Akpa, I. Ahmad, T. Zhao, M. Maaza, F.I. Ezema, Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur. Polym. J 122, 1 (2020)

    Google Scholar 

  42. M.N. Akhtar, M.A. Khan, M. Ahmad, M.S. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

Samson O. Aisida and Fabian I. Ezema acknowledge TETFUND under the contract number (TETFUND/DR&D/CE/UNI/NSKKA/RP/VOL.1). Samson O. Aisida acknowledges the NCP-TWAS Postdoc Fellowship award (NCP-CAAD/TWAS_Fellow8408) and expresses his appreciation to Prof. Ishaq Ahmad, the director of the Experimental Physics Lab., National Center for Physics, Islamabad, Pakistan and Prof. Fabian I. Ezema, Department of Physics and Astronomy University of Nigeria, for their assistance to access some characterization machines for the success of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson O. Aisida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arinzechukwu, C.E., Aisida, S.O., Agbogu, A. et al. Polyethylene glycol capped nickel–zinc ferrite nanocomposites: structural, optical and magnetic properties suitable for hyperthermia applications. Appl. Phys. A 128, 1088 (2022). https://doi.org/10.1007/s00339-022-06248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06248-8

Keywords

Navigation