Skip to main content
Log in

Designing of tri-band bandpass microwave filter based on (E–Z) inter-coupled tapered metamaterial resonators for C- and X-band applications and operations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-frequency devices using the filtering function have contributed in one way or another to the development of modern electronic systems. Multi-band microwave filters can cover several frequency bands for a single device; they have allowed designers to have more miniaturized systems. In this paper, a tri-band bandpass microwave filter (TBBPF) is reported for a novel design. Our design approach is based on the use of tapered metamaterial resonators to be able to control the resonances of our filter according to the desired frequency bands. The proposed TBBPF consists of a pair of this kind of split-ring resonator (SRR) of the same (E–Z) geometric shape for two different sizes chosen from among three studied sizes. Each (EZ-SRR) resonator is formed by a dual-E-shaped outer ring coupled to an inner Z-shaped segment to have the necessary electromagnetic coupling with the desired miniaturization. The sizes of the two EZ-SRRs forming the filter are optimized for the physical dimensions of (25 \(\times\) 22) mm2 for the large resonator and (22 \(\times\) 18) mm2 for the medium-sized resonator. The TBBPF is parallelly fed by two microstrip lines, and the assembly is printed on a Rogers RO4003 dielectric substrate with physical characteristics (\(\varepsilon_{r}\) = 3.55; \(tg\delta\) = 0.0027). The two EZ-SRRs are connected by a conductive arm to create the third resonance. Numerical calculations using the High-Frequency Structure Simulator (HFSS) calculator based on the finite-element method (FEM) are carried out to design the EZ-SRR resonator and the global filter of electrical dimensions (1.1 \(\lambda_{0} \times\) 0.73 \(\lambda_{0}\)), where \(\lambda_{0}\) is the free space wavelength at the operating center frequency of the lower band computed at 4.22 GHz. The obtained results show a bandpass behavior of our proposed structure for three bandwidths; two of them covering the C-band for 220 and 235 MHz widths at 4.22 and 7.36 GHz resonances, respectively. The third bandwidth of 870 MHz width at the 9.35 GHz resonance covers the X-band. The offered TBBPF is fit for wireless communications, sensors, and radar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data availability is not Applicable.

References

  1. L. Nooria, A. Rezaei, AEÜ-Int. J. Elec. Com. 81, 136 (2017). https://doi.org/10.1016/j.aeue.2017.07.023

    Article  Google Scholar 

  2. Q. Liu, J. Ge, P.F. Mable, Opt. Lett. 43, 5685 (2018). https://doi.org/10.1364/OL.43.005685

    Article  ADS  Google Scholar 

  3. R. Gómez-García, R. Loeches-Sánchez, D. Psychogiou, D. Peroulis, IEEE Trans. Circ. Sys-II: Exp. Bri. 65, 271 (2018). https://doi.org/10.1109/TCSII.2017.2688336

    Article  Google Scholar 

  4. C. Chen, J. Li, K. Zhou, R. Chen, Z. Wang, Y. He, IET Microw. Ant. Prop. 14, 374 (2020). https://doi.org/10.1049/iet-map.2019.0563

    Article  Google Scholar 

  5. C. Asci, A. Sadeqi, W. Wang et al., Sci. Rep. 10, 1050 (2020). https://doi.org/10.1038/s41598-020-57773-6

    Article  ADS  Google Scholar 

  6. Y. Liu, C. Tomassoni, S. Pei, Y. Tian, Int. J. RF Microw. Comput.-Aided. Eng. (2020). https://doi.org/10.1002/mmce.22227

    Article  Google Scholar 

  7. A. Nosrati, M. Mohammad-Taheri, M. Nosrati, Ant Prop. 14, 1229 (2020). https://doi.org/10.1049/iet-map.2020.0371

    Article  Google Scholar 

  8. V.G. Veselago, Soviet. Phys. Uspekhi. 10, 509 (1968)

    Article  ADS  Google Scholar 

  9. R. Marquez, F. Medina, R. Raffi, Phys. Rev B. 65, 1 (2002)

    Article  Google Scholar 

  10. S. Pandit, A. Mohan, P. Ray, Appl. Phys. A. 125, 1 (2019). https://doi.org/10.1007/s00339-019-2710-x

    Article  Google Scholar 

  11. C. Kurter, T. Lan, L. Sarytchev, S.M. Anlage, Phys. Rev. Appl. 3, 54010 (2015). https://doi.org/10.1103/PhysRevApplied.3.054010

    Article  ADS  Google Scholar 

  12. M.T. Islam, H. Ahasanul, A.F. Almutairi, A. Nowshad, Sensors (MDPI) 19, 169 (2019). https://doi.org/10.3390/s19010169

    Article  ADS  Google Scholar 

  13. T. Ramachandran, M.R. IqbalFaruque, M. TariqulIslam, Res. In. Phys. 16, 1 (2020). https://doi.org/10.1016/j.rinp.2020.102942

    Article  Google Scholar 

  14. M. Weng, S. Chang, W. Chen, S. Lan, C. Hung, Y. Su, H. Kuan, Microw. Opt. Tech. Lett. 56, 1427 (2014). https://doi.org/10.1002/mop.28342

    Article  Google Scholar 

  15. B. Mazdouri, S.M. Javadzadeh, Phys. C-Supercond. Appl. 540, 26 (2017). https://doi.org/10.1016/j.physc.2017.07.005

    Article  ADS  Google Scholar 

  16. A.K. Gorur, Int. J. RF Microw. Comput.-Aided Eng. (2018). https://doi.org/10.1002/mmce.21230

    Article  Google Scholar 

  17. D. Choudhary, R. Chaudhary, AEÜ-Int. J. Elec. Com. 89, 110 (2018). https://doi.org/10.1016/j.aeue.2018.03.032

    Article  Google Scholar 

  18. J. Alam, M.R. Iqbal-Faruque, M. Tariqul Islam, J. Phys. D: Appl. Phy. 51, 1 (2018). https://doi.org/10.1088/1361-6463/aac569

    Article  Google Scholar 

  19. R. Choudhury, M. Kumar, A. Sengupta et al., Microsys. Tech. 26, 1369 (2020). https://doi.org/10.1007/s00542-019-04669-9

    Article  Google Scholar 

  20. A. Bage, S. Das, L. Murmu, IETE J. Res. 64, 553 (2018). https://doi.org/10.1080/03772063.2017.1341821

    Article  Google Scholar 

  21. C. Tang, Q. Niu, Y. He, X. Zhang, B.X. Wang, Mater. Res. Express. 6, 1 (2020)

    Google Scholar 

  22. S. Princy, B.S. Sreeja, E. Manikandan et al., Pramana - J. Phys. 92, 1 (2019). https://doi.org/10.1007/s12043-019-1757-8

    Article  Google Scholar 

  23. M. Berka, Z. Mahdjoub, M. Hebali, J. Elec. Eng. 69, 311 (2018). https://doi.org/10.2478/jee-2018-0044

    Article  Google Scholar 

  24. M. Berka, H.A. Azzeddine, A. Bendaoudi, Z. Mahdjoub, A.Y. Rouabhi, J. Electr. Mater. 50, 4887 (2021). https://doi.org/10.1007/s11664-021-09024-1

    Article  ADS  Google Scholar 

  25. A. Nicolson, G. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)

    Article  ADS  Google Scholar 

  26. W. Weir, IEEE 62, 33 (1974)

    Article  Google Scholar 

  27. O. Luukkonen, S. Maslovski, S. Tretyakov, IEEE Ant. Wirel. Propag. Lett. 10, 1295 (2011). https://doi.org/10.1109/LAWP.2011.2175897

    Article  ADS  Google Scholar 

  28. S. Hannan, M.T. Islam, A.F. Almutairi, Sci. Rep. 10, 10338 (2020). https://doi.org/10.1038/s41598-020-67262-5

    Article  ADS  Google Scholar 

  29. A.K. Panda, R.K. Mishra, S. Sahu, Microw. Opt. Technol. 58, 1 (2016). https://doi.org/10.1002/mop.29684

    Article  Google Scholar 

  30. A. Sanada, K. Murakami, S. Aso, H. Kubo, I. Awai, Microw. Sympos. Dig. 1, 301 (2004). https://doi.org/10.1109/MWSYM.2004.1335877

    Article  Google Scholar 

  31. K.S. Arunjith, G.C. Ghivela, J. Sengupta, Wirel. Pers. Comm. 118, 3457 (2021). https://doi.org/10.1007/s11277-021-08188-7

    Article  Google Scholar 

  32. R.A. Darwash, Y.S. Mezaal, H.A. Jabbar, H.Z. Khudhur, Mater. Today: Proc. 61, 1038 (2022). https://doi.org/10.1016/j.matpr.2021.10.299

    Article  Google Scholar 

  33. M. Danaeian, Int. J. Electron. Commun. (AEÜ) 139, 153924 (2021). https://doi.org/10.1016/j.aeue.2021.153924

    Article  Google Scholar 

  34. N. Dhar, M.A. Rahman, M.H. Azad, SN Appl. Sci. 2, 1077 (2020). https://doi.org/10.1007/s42452-020-2867-0

    Article  Google Scholar 

  35. M. Danaeian, Wirel. Pers. Comm. 125, 2907 (2022). https://doi.org/10.1007/s11277-022-09691-1

    Article  Google Scholar 

  36. F. Rashed Iqbal, M. Jakir Hossain, S.S. Islam, M.F. Bin Jamlos, M. Tariqul Islam, Appl. Phys. A. (2017). https://doi.org/10.1007/s00339-016-0727-y

    Article  Google Scholar 

  37. M. Javanbakht, Materialia 20, 101199 (2021). https://doi.org/10.1016/j.mtla.2021.101199

    Article  MathSciNet  Google Scholar 

  38. M. Javanbakht, M. Adaei, J. Mater. Sci. Metals Corros. (2019). https://doi.org/10.1007/s10853-019-04067-6

    Article  Google Scholar 

  39. M.R. Arunabha, EPL 133, 56001 (2021). https://doi.org/10.1209/0295-5075/133/56001

    Article  Google Scholar 

  40. M. AbdulRehman, S. Khalid, Elec. Lett. (IET) 54, 1126 (2018). https://doi.org/10.1049/el.2018.5240

    Article  ADS  Google Scholar 

  41. D.K. Choudhary, R.K. Chaudhary, Radio. Eng. 27, 1 (2018). https://doi.org/10.13164/re.2018.0373

    Article  Google Scholar 

  42. Z. Hou, C. Liu, B. Zhang, R. Song, Z. Zhang, D. He, Electronics (MDPI) 9, 205 (2020). https://doi.org/10.3390/electronics9020205

    Article  Google Scholar 

  43. S. Tantiviwat, S.Z. Ibrahim, M.S. Razalli, Radio. Eng. 27, 129 (2019). https://doi.org/10.13164/re.2019.0129

    Article  Google Scholar 

  44. A. Abdul Basit, M.I. Khattak, J. Nebhen, A. Jan, G. Ahmad, PLoS ONE 16, 1 (2021). https://doi.org/10.1371/journal.pone.0258386

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Algerian Ministry of Higher Education and Scientific Research and the General Directorate of Scientific Research and Technological Development (DGRSDT) via funding through the PRFU under Project No. A25N01UN220120200001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Berka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berka, M., Bendaoudi, A., Benkhallouk, K. et al. Designing of tri-band bandpass microwave filter based on (E–Z) inter-coupled tapered metamaterial resonators for C- and X-band applications and operations. Appl. Phys. A 128, 1112 (2022). https://doi.org/10.1007/s00339-022-06242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06242-0

Keywords

Navigation