Skip to main content
Log in

Theoretical investigation of cation distribution and their effect on the physical properties of Ni-doped YIG system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a theoretical study about the cation distribution and their effect on the physical properties of Ni-doped YIG system, based on a phenomenological model, the generalized Kapustinskii equation, and the single ion contribution to the saturation magnetization and cubic anisotropy constant. From the calculated reticular energy values (\(U_{{{\text{ret}}}}\)) it was possible to determine the more probable valence state configuration, corresponding with the coexistence of 3+ and 2+ oxidation states for Fe ions, the 2+ oxidation state for Ni, and oxygen vacancies presence. In addition, from the occupation probability values, it was demonstrated that Ni2+ and Fe2+ cations prefer to occupy the octahedral sites, reflecting on the saturation magnetization (Ms) and cubic anisotropy constant (K1) behaviors. The theoretical results of Ms and K1 were compared with the experimental values, showing a reasonable correspondence, considering the simplicity of the presented phenomenological model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Wu, A. Hoffmann, Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications (Academic Press, Cambridge, 2013)

    Google Scholar 

  2. S. Geller, M.A. Gilleo, The crystal structure and ferrimagnetism of yttrium-iron garnet, Y3Fe2(FeO4)3. J. Phys. Chem. Solids 3, 30–36 (1957). https://doi.org/10.1016/0022-3697(57)90044-6

    Article  ADS  Google Scholar 

  3. S. Geller, M.A. Gilleo, The effect of dispersion corrections on the refinement of the yttrium-iron garnet structure. J. Phys. Chem. Solids 9, 235–237 (1959). https://doi.org/10.1016/0022-3697(59)90101-5

    Article  ADS  Google Scholar 

  4. L.S. Xie, G.X. Jin, L. He, G.E.W. Bauer, J. Barker, K. Xia, First-principles study of exchange interactions of yttrium iron garnet. Phys. Rev. B 95, 014423 (2017). https://doi.org/10.1103/PhysRevB.95.014423

    Article  ADS  Google Scholar 

  5. R. Peña-Garcia, Y. Guerra, F.E.P. Santos, L.C. Almeida, E. Padrón-Hernández, Structural and magnetic properties of Ni-doped yttrium iron garnet nanopowders. J. Magn. Magn. Mater. 492, 165650 (2019). https://doi.org/10.1016/j.jmmm.2019.165650

    Article  Google Scholar 

  6. J.P. Caland, C.P.C. Medrano, A. Caytuero, E. Baggio-Saitovitch, F. Litterst, J.M. Soares, M. Cabrera-Baez, E. Padrón-Hernández, T. Marques, Y. Guerra, B.C. Viana, F.E.P. Santos, R. Peña-Garcia, Preferential site occupancy of Ni ions and oxidation state of Fe ions in the YIG crystal structure obtained by sol-gel method. J. Alloys Compd. 849, 156657 (2020). https://doi.org/10.1016/j.jallcom.2020.156657

    Article  Google Scholar 

  7. L.R.F. Leal, R. Milani, D.M. Oliveira, Y. Guerra, E. Padrón-Hernández, A. Franco-Jr, B.C. Viana, F.E.P. Santos, R. Peña-Garcia, Competitive effect of dopants on magnetic and structural properties in yttrium iron garnet co-doped with Er and Cr. Ceram. Int. 46, 18584–18591 (2020). https://doi.org/10.1016/j.ceramint.2020.04.165

    Article  Google Scholar 

  8. R.B. Borade, S.E. Shirsath, G. Vats, A.S. Gaikwad, S.M. Patange, S.B. Kadam, R.H. Kadam, A.B. Kadam, Polycrystalline to preferred-(100) single crystal texture phase transformation of yttrium iron garnet nanoparticles. Nanoscale Adv. 1, 403–413 (2019). https://doi.org/10.1039/C8NA00123E

    Article  ADS  Google Scholar 

  9. S. Khanra, A. Bhaumik, Y.D. Kolekar, P. Kahol, K. Ghos, Structural and magnetic studies of Y3Fe5–5xMo5xO12. J. Magn. Magn. Mater. 369, 14–22 (2014). https://doi.org/10.1016/j.jmmm.2014.06.018

    Article  ADS  Google Scholar 

  10. N.P. Duong, D.T.T. Nguyet, T.T. Loan, L.N. Anh, W.K.S. Soontaranon, T.T.V. Nga, Effects of Sn4+ doping and oxygen vacancy on magnetic and electrical properties of yttrium iron garnet prepared by sol-gel method. Ceram. Int. 47, 6442–6452 (2021). https://doi.org/10.1016/j.ceramint.2020.10.226

    Article  Google Scholar 

  11. C. Rudowicz, Magnetocrystalline Anisotropy of 3d6 and 3d4 Ions at Triclinic. Symmetry sites application to Fe2+ Ions in YIG: Me4+ (Me = Si, Ge). Z. Naturforsch. 38a, 540–554 (1983). https://doi.org/10.1515/zna-1983-0510

    Article  ADS  Google Scholar 

  12. C. Rudowicz, On the mechanism of spin reorientation in YIG:Si. Z. Naturforsch 39a, 605–614 (1984). https://doi.org/10.1515/zna-1984-0701

    Article  ADS  Google Scholar 

  13. L.N. Mahour, M. Manjunatha, H.K. Choudhary, R. Kumar, A.V. Anupama, R. Damle, K.P. Ramesh, B. Sahoo, Structural and magnetic properties of Al-doped yttrium iron garnet ceramics: 57Fe internal field NMR and Mössbauer spectroscopy study. J. Alloys Compd. 773, 612–622 (2019). https://doi.org/10.1016/j.jallcom.2018.09.213

    Article  Google Scholar 

  14. T. Su, S. Ning, E. Cho, C.A. Ross, Magnetism and site occupancy in epitaxial Y-rich yttrium iron garnet films. Phys. Rev. Mater. 5, 094403 (2021). https://doi.org/10.1103/PhysRevMaterials.5.094403

    Article  Google Scholar 

  15. J. Matilla-Arias, E. Govea-Alcaide, P.A. Mariño-Castellanos, F. Rosales-Saiz, Phenomenological model for prediction of cation substitution distribution and some physical properties in Mn3+-doped barium hexaferrite. J. Supercond. Nov. Magn. 31, 251–256 (2018). https://doi.org/10.1007/s10948-017-4198-y

    Article  Google Scholar 

  16. J. Matilla-Arias, E. Govea-Alcaide, P. Mariño-Castellanos, F. Rosales-Saiz, I.F. Machado, K. Montero-Rey, Effects of lanthanum on structural and magnetic properties of Sr1–xLa2/3xFe12O19 compounds: theoretical and experimental results. J. Supercond. Nov. Magn. 32, 3671–3678 (2019). https://doi.org/10.1007/s10948-019-5119-z

    Article  Google Scholar 

  17. L. Glasser, Lattice energies of crystals with multiple ions: a generalized kapustinskii equation. Inorg. Chem. 34, 4935–4936 (1995). https://doi.org/10.1021/ic00124a003

    Article  Google Scholar 

  18. L. Glasser, H.D. Brooke-Jenkins, Lattice energies and unit cell volumes of complex ionic solids. J. Am. Chem. Soc. 122, 632–638 (2000). https://doi.org/10.1021/ja992375u

    Article  Google Scholar 

  19. W. Hume-Ruthery, G.W. Mabbott, K.M. Channel-Evans, The freezing points, melting points, and solid solubility limits of the alloys of silver and copper with the elements of the b sub-groups. Philos. Trans. R. Soc. A 233, 1–97 (1934). https://doi.org/10.1098/rsta.1934.0014

    Article  ADS  Google Scholar 

  20. L. Pauling, The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929). https://doi.org/10.1021/ja01379a006

    Article  Google Scholar 

  21. L.H. Ahrens, The use of ionization potentials Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta 2, 155–169 (1952). https://doi.org/10.1016/0016-7037(52)90004-5

    Article  ADS  Google Scholar 

  22. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  23. W.D. Callister-Jr, Materials Science and Engineering: An Introduction (John Wiley & Sons, Hoboken, 2007)

    Google Scholar 

  24. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, IEE Press (John Wiley & Sons, Hoboken, 2009)

    Google Scholar 

  25. M.N. Akhtar, K. Ali, A. Umer, T. Ahmad, M.A. Khan, Structural elucidation, and morphological and magnetic behavior evaluations, of low-temperature sintered, Ce-doped, nanostructured garnet ferrites. Mater. Res. Bull. 101, 48–55 (2018). https://doi.org/10.1016/j.materresbull.2018.01.009

    Article  Google Scholar 

  26. M. Golkari, H. Shokrollahi, H. Yang, The influence of Eu cations on improving the magnetic properties and promoting the Ce solubility in the Eu, Ce-substituted garnet synthesized by the solid state route. Ceram. Int. 46, 8553–8560 (2020). https://doi.org/10.1016/j.ceramint.2019.12.085

    Article  Google Scholar 

  27. R. Peña-Garcia, Y. Guerra, F.R. de Souza, L.A.P. Gonçalves, E. Padrón-Hernández, The extended Bloch’s law in yttrium iron garnet doped with Zn, Ni and Co. Phys. E Low Dimens. Syst. Nanostruct. 103, 354–360 (2018). https://doi.org/10.1016/j.physe.2018.06.027

    Article  ADS  Google Scholar 

  28. S.A. Manuilov, S.I. Khartsev, A.M. Grishin, Pulsed laser deposited Y3Fe5O12 films: Nature of magnetic anisotropy I. J. Appl. Phys. 106, 123917 (2009). https://doi.org/10.1063/1.3272731

    Article  ADS  Google Scholar 

  29. M.B. Moskowitz, Fundamental physical constants and conversion factors. A Handb. Phys. Const. 1, 346–355 (1995)

    Google Scholar 

  30. L. Leal, J. Matilla-Arias, Y. Guerra, C.S. Oliveira, S. Castro-Lopes, B.C. Viana, G. Abreu, P. Mariño-Castellanos, F. Santos, R. Peña-Garcia, Oxidation states and occupation sites of Fe and Cu ions in the Y3Fe5–xCuxO12, (0.00 ≤ x ≤ 0.05) compound synthesized via sol gel method. J. Alloys Compd. 915, 165417 (2022). https://doi.org/10.1016/j.jallcom.2022.165417

    Article  Google Scholar 

  31. V. Sharma, B.K. Kuanr, Magnetic and crystallographic properties of rare-earth substituted yttrium-iron garnet. J. Alloys Compd. 748, 591–600 (2018). https://doi.org/10.1016/j.jallcom.2018.03.086

    Article  Google Scholar 

  32. F. Chen, Q. Li, X. Wang, J. Ouyang, Y. Nie, Z. Feng, R. Gong, Y. Chen, V.G. Harris, Crystal structure tailored microwave magnetodielectric effect in YbxY3-xFe5O12 ceramics. J. Alloys Compd. 726, 1030–1039 (2017). https://doi.org/10.1016/j.jallcom.2017.08.040

    Article  Google Scholar 

  33. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  34. M. Gonçalves, J. Matilla-Arias, F.P. Araujo, Y. Guerra, B.C. Viana, E.C. Silva-Filho, J.A. Osajima, L.C. Almeida, A. Franco Jr., R. Peña-Garcia, Investigation of structural, optical and magnetic properties of Y3–xCexFe5-yEryO12 compound. Phys B: Condens. Matter. 644, 414231 (2022). https://doi.org/10.1016/j.physb.2022.414231

    Article  Google Scholar 

  35. R. Peña-Garcia, Y. Guerra, D.M. Oliveira, A. Franco Jr., E. Padrón-Hernández, Local atomic disorder and temperature dependence of saturation magnetization in yttrium iron garnet. Ceram. Int. 46, 5871–5875 (2020). https://doi.org/10.1016/j.ceramint.2019.11.038

    Article  Google Scholar 

  36. D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh, T.D. Hien, Temperature-dependent magnetic properties of yttrium iron garnet nanoparticles prepared by citrate sol-gel. J. Alloys Compd. 541, 18–22 (2012). https://doi.org/10.1016/j.jallcom.2012.06.122

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), (CNPq N 4/2021-Bolsa de Produtividade em Pesquisa-PQ, 307659/2021-6), (Chamada CNPq/MCTI/FNDCT N o 18/2021-Faixa A, 407796/2021-5); Financiadora de Estudos e Projetos (FINEP) and Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) (APQ-0635- 3.03/21-Jovens Pesquisadores).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Peña-Garcia.

Ethics declarations

Competing interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matilla-Arias, J., Guerra, Y., Mariño-Castellanos, P.A. et al. Theoretical investigation of cation distribution and their effect on the physical properties of Ni-doped YIG system. Appl. Phys. A 128, 1087 (2022). https://doi.org/10.1007/s00339-022-06236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06236-y

Keywords

Navigation