Skip to main content
Log in

Comparative investigation of magnetic, di-electric, optical, and electrical properties of mono-BaFe2O4 and hexa-BaFe12O19 nano-ferrites for photovoltaic (PV) applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Barium mono-ferrite (BaFe2O4) and barium hexa-ferrite (BaFe12O19) nanoparticles were produced by the sol–gel auto-combustion method. The prepared nanoparticles were examined by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy (RAMAN), and Scanning electron microscopy (SEM) for structural, functional, and vibrational bonding, and morphological study, respectively. The optical, dielectric, and magnetic characteristics were explored by UV–visible spectroscopy, Fluorescence spectrophotometer, Impedance analyzer, and Vibrating sample magnetometer (VSM). The ferroelectric nature of magnetic nanoparticles was confirmed by the Multi-ferroic system. Electrochemical impedance spectroscopy monitored electrical properties by current–voltage (IV) curves. The structure of BaFe2O4 was orthorhombic having space group Pnma 3 while BaFe12O19 was identified as hexagonal with space group P63/mmc (194). FTIR and Raman spectrum identified chemical structural bonds. SEM micrographs revealed the distinct size of nanoparticles. Saturation magnetization (Ms) for BaFe12O19 was 25.88 emu/g with a coercivity (Hc) value of 9668.05 and greater than BaFe2O4 with 1.4 emu/g and 2038. Di-electric properties of BaFe12O19 were higher than BaFe2O4 and not considered encouraging for photovoltaic applications. BaFe2O4 indicated balanced absorbance (1.03%) in the UV–visible region with 1.51 eV direct band gap that justified the main characteristics of a PV material. BaFe12O19 possessed high absorbance (37%) in the UV region with an indirect band gap of 1.24 eV that not believed as a viable choice for PV functioning. The fluorescence emission spectrum resulted higher concentration of 106 for BaFe12O19 while 51.3 for BaFe2O4 in the visible region. The highly concentrated materials could damage PV module by triggering hot spot. The IV curves unveiled BaFe2O4 more respondents to dark and photo-current while BaFe12O19 possessed a negligible response. Above-stated results established that BaFe2O4 is comparatively a novel nano-ferrite that comprises more supportive properties for photovoltaic applications than BaFe12O19.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. W.S. Ebhota, T.-C. Jen, Efficient Low-cost materials for solar energy applications: roles of nanotechnology, in In recent developments in photovoltaic materials and devices. (IntechOpen, London, 2019). https://doi.org/10.5772/intechopen.79136

    Chapter  Google Scholar 

  2. N.A. Ahmed, M. Miyatake, A.K. Al-Othman, Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems. Energy Convers. Manag. 49(10), 2711–2719 (2008). https://doi.org/10.1016/j.enconman.2008.04.005

    Article  Google Scholar 

  3. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004

    Article  Google Scholar 

  4. D. Zhang, B. Fan, L. Ying, N. Li, C.J. Brabec, F. Huang, Y. Cao, Y. Lei, Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 1(1), 4–23 (2021). https://doi.org/10.1002/SUS2.10

    Article  Google Scholar 

  5. F. De Rossi, G. Polino, F. Brunetti, New generation flexible printed photovoltaic, in Sustainable strategies in organic electronics. (Elsevier, Amsterdam, 2022), pp.463–503

    Chapter  Google Scholar 

  6. U. Naresh, R.J. Kumar, Ferroelectric properties of CuFe2O4, BaFe2O4, Ba0.2La0.8Fe2O4 nanoparticles. Electr. Sci. Eng. (2019). https://doi.org/10.30564/ese.v1i1.929

    Article  Google Scholar 

  7. Band gap energies of semiconductors: everything about solar energy. (2015) http://www.energyprofessionalsymposium.com/?p=28706. Accessed 21 Oct 2022

  8. Photovoltaic effect: EME 812: utility solar power and concentration. (2020) https://www.e-education.psu.edu/eme812/node/534. Accessed 21 Oct 2022

  9. J.R.S. Brownson, Systems logic of devices: optoelectronics, in Solar energy conversion systems. (Elsevier, Amsterdam, 2013), pp.349–356

    Google Scholar 

  10. A. Uddin, Organic solar cells, in Comprehensive guide on organic and inorganic solar cells. (Elsevier, Amsterdam, 2022), pp.25–55. https://doi.org/10.1016/B978-0-323-85529-7.00006-2

    Chapter  Google Scholar 

  11. New two-dimensional semiconductor has ideal band gap for solar harvesting. (2012) https://www.phys.org/news/2012-11-two-dimensional-semiconductor-ideal-band-gap.html. Accessed 21 Oct 2022

  12. N. Kumar, M.K. Phani, P. Chamoli, M.K. Manoj, A. Sharma, W. Ahmed, A.K. Srivastava, S. Kumar, Nanomaterials for advanced photovoltaic cells, in Emerging nanotechnologies for renewable energy. (Elsevier, Amsterdam, 2021), pp.239–258

    Chapter  Google Scholar 

  13. B. Ayim-Otu, M. Kuncan, Ö. Şahin, S. Horoz, Synthesis and photovoltaic application of ZnS: Cu (3%) nanoparticles. J. Aust. Ceram. Soc. 56(2), 639–643 (2020). https://doi.org/10.1007/S41779-019-00380-0

    Article  Google Scholar 

  14. M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.H. Rizvi, M.F. Islam, Bandgap tuning of Sm and Co Co-doped BFO nanoparticles for photovoltaic application. J. Electron. Mater. 47(12), 6954–6958 (2018). https://doi.org/10.1007/S11664-018-6597-7

    Article  ADS  Google Scholar 

  15. N.D. Davlatshoevich, K. Mirzoaziz Ashur, B.A. Saidali, K. Kholmirzotagoykulovich, A. Lyubchyk, Investigation of structural and optoelectronic properties of N-doped hexagonal phases of TiO2(TiO2-x N x )nanoparticles with DFT realization: OPTIMIZATION of the band gap and optical properties for visible-light absorption and photovoltaic applications. Biointerface Res. Appl. Chem. 12(3), 3836–3848 (2022). https://doi.org/10.33263/BRIAC123.38363848

    Article  Google Scholar 

  16. K.S. Arti, P. Kumar, R. Walia, V. Verma, Improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application. Results Phys. 14, 102403 (2019). https://doi.org/10.1016/J.RINP.2019.102403

    Article  Google Scholar 

  17. X. Wu, Z. Wan, J. Qi, M. Wang, Ferroelectric photovoltaic properties of perovskite Na0.5Bi0.5FeO3-based solution-processed solar cells. J. Alloys Compd. 750, 959–964 (2018). https://doi.org/10.1016/J.JALLCOM.2018.04.076

    Article  Google Scholar 

  18. I. Bibi, M. Muneer, M. Iqbal, N. Alwadai, A.H. Almuqrin, A.S. Altowyan, F.H. Alshammari, A.S. Almuslem, Y. Slimani, Effect of doping on dielectric and optical properties of barium hexaferrite: photocatalytic performance under solar light irradiation. Ceram. Int. 47(22), 31518–31526 (2021). https://doi.org/10.1016/J.CERAMINT.2021.08.030

    Article  Google Scholar 

  19. S.P. Keerthana, R. Yuvakkumar, G. Ravi, A.G. Al-Sehemi, D. Velauthapillai, Synthesis of pure and lanthanum-doped barium ferrite nanoparticles for efficient removal of toxic pollutants. J. Hazard. Mater. 424, 127604 (2022). https://doi.org/10.1016/J.JHAZMAT.2021.127604

    Article  Google Scholar 

  20. M. Alzaid, Enhancement in optical properties of lanthanum-doped manganese barium hexaferrites under different substitutions. Adv. Condens. Matter Phys. 2021, 1–6 (2021). https://doi.org/10.1155/2021/8849595

    Article  Google Scholar 

  21. W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Y.-J. of M., undefined. (n.d.), Key step in the synthesis of ultrafine BaFe12O19 by sol-gel technique. J. Magn. Magn. Mater. (1997). https://doi.org/10.1016/S0304-8853(96)00664-6

    Article  Google Scholar 

  22. H. Yang, T. Ye, Y. Lin, M. Liu, Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline. Synth. Met. 210, 245–250 (2015). https://doi.org/10.1016/j.synthmet.2015.10.006

    Article  Google Scholar 

  23. S. Iqbal, G. Kotnala, J. Shah, S. Ahmad, Barium ferrite nanoparticles: a highly effective EMI shielding material. Mater. Res. Express 6(5), 055018 (2019). https://doi.org/10.1088/2053-1591/ab02a4

    Article  ADS  Google Scholar 

  24. S.L. Hu, J. Liu, H.Y. Yu, Z.W. Liu, Synthesis and properties of barium ferrite nano-powders by chemical co-precipitation method. J. Magn. Magn. Mater. 473, 79–84 (2019). https://doi.org/10.1016/j.jmmm.2018.10.044

    Article  ADS  Google Scholar 

  25. Z. Durmus, A Comparative study on magnetostructural properties of barium hexaferrite powders prepared by polyethylene glycol. J. Nanomater. 2014, 1–7 (2014). https://doi.org/10.1155/2014/302350

    Article  Google Scholar 

  26. M.G. Shalini, A. Subha, B. Sahu, S.C. Sahoo, Phase evolution and temperature dependent magnetic properties of nanocrystalline barium hexaferrite. J. Mater. Sci. 30(14), 13647–13654 (2019). https://doi.org/10.1007/s10854-019-01734-x

    Article  Google Scholar 

  27. L. Rezlescu, E. Rezlescu, P. P.-J. of M., undefined. (n.d.), Fine barium hexaferrite powder is prepared by the crystallization of glass. J. Magn. Magn. Mater. (1999). https://doi.org/10.1016/S0304-8853(98)00442-9

    Article  Google Scholar 

  28. Z. Tang, S. Nafis, C. S.-I. T., undefined. (n.d.), Magnetic properties of aerosol synthesized barium ferrite particles. Ieeexplore. Ieee. Org. (1989). https://doi.org/10.1109/20.42580

    Article  Google Scholar 

  29. D. Barb, L. Diamandescu, A.D. Rusi, M. Morariu, V. Teodorescu, Preparation of barium hexaferrite by a hydrothermal method: structure and magnetic properties. J. Mater. Sci. 21(4), 1118–1122 (1986). https://doi.org/10.1007/BF00553240

    Article  ADS  Google Scholar 

  30. X. Liu, J. Wang, L. Gan, S. Ng, J. D.-J. of M., undefined. (n.d.), An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. (1998). https://doi.org/10.1016/S0304-8853(97)01141-4

    Article  Google Scholar 

  31. S. Janasi, D. Rodrigues, F. L.-I. T. on, undefined. (n.d.), Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions. Ieeexplore. Ieee. Org. (2000). https://doi.org/10.1109/20.908788

    Article  Google Scholar 

  32. I.P. Parkin, G. Elwin, L.F. Barquín, Q.T. Bui, Q.A. Pankhurst, A.V. Komarov, Y.G. Morozov, Self-propagating high temperature synthesis of hexagonal ferrites MFe12O19 (M = Sr, Ba). Adv. Mater. 9(8), 643–645 (1997). https://doi.org/10.1002/ADMA.19970090811

    Article  Google Scholar 

  33. R. Peymanfar, M. Rahmanisaghieh, A. Ghaffari, Y. Yassi, Preparation and identification of BaFe2O4 nanoparticles by the sol–gel route and investigation of its microwave absorption characteristics at ku-band frequency using silicone rubber medium. In: Proceedings, 2(17), 5234. (2018) https://doi.org/10.3390/ecms2018-05234

  34. S. Mandizadeh, M. Salavati-Niasari, M. Sadri, Hydrothermal synthesis, characterization, and magnetic properties of BaFe2O4 nanostructure as photocatalytic oxidative desulfurization of dibenzothiophene. Sep. Purif. Technol. 175, 399–405 (2017). https://doi.org/10.1016/j.seppur.2016.11.071

    Article  Google Scholar 

  35. A. Lagashetty, V. Muttin, M.K. Patil, S.K. Ganiger, Synthesis, characterization, and studies of BaFe2O4/PMMA nanocomposite. Polym. Bull. 78(10), 5905–5921 (2021). https://doi.org/10.1007/S00289-020-03403-0/FIGURES/9

    Article  Google Scholar 

  36. R. Dilip, R. Jayaprakash, Synthesis and characterization of BaFe2O4 nano-ferrites for gas sensor applications. Energy Ecol. Environ. 3(4), 237–241 (2018). https://doi.org/10.1007/S40974-018-0093-Z/FIGURES/4

    Article  Google Scholar 

  37. A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and magnetic property of monoferrite BaFe2O4 nanoparticles with aid of a novel precursor. J. Mater. Sci. 26(6), 3813–3818 (2015). https://doi.org/10.1007/S10854-015-2907-5/FIGURES/5

    Article  Google Scholar 

  38. S. Sheibani, S. Mandizadeh, S.G.A. Mousavi, G. Mostafaii, Adsorption of hydrogen sulfide (H2S) by BaFe2O4-activated clay nanocomposite: preparation and evaluation. J. Nanostruct. 10(4), 838–845 (2020). https://doi.org/10.22052/JNS.2020.04.017

    Article  Google Scholar 

  39. R. Peymanfar, M. Rahmanisaghieh, A. Ghaffari, Y. Yassi, Preparation, and identification of BaFe2O4 nanoparticles by the sol–gel route and investigation of its microwave absorption characteristics at ku-band frequency using silicone rubber medium. Proceedings 2018. 2(17), 5234 (2018) https://doi.org/10.3390/ECMS2018-05234

  40. U. Naresh, K.R. Jeevan, Structural, optical, magnetic properties of CuFe2O4, BaFe2O4 nano-particle synthesized via hydrothermal synthesis. I-Manag. J. Mater. Sci. 7(3), 8 (2019). https://doi.org/10.26634/JMS.7.3.15753

    Article  Google Scholar 

  41. R. Dilip, K. Ravikumar, K.V. Chandekar, M. Shkir, V.G. Krishnan, K.S. Shinde, I.M. Ashraf, Enhancement of magnetic and dielectrics performance of BaFe2O4 nanoparticles influenced by tri-sodium citrate as surfactant. J. Mater. Sci. 33(30), 23841–23850 (2022). https://doi.org/10.1007/s10854-022-09142-4

    Article  Google Scholar 

  42. H. Kenfoud, N. Nasrallah, O. Baaloudj, C. Belabed, T. Chaabane, M. Trari, Opto-electrochemical characteristics of synthesized BaFe2O4 nanocomposites: photocatalytic degradation and hydrogen generation investigation. Int. J. Hydrogen Energy 47(24), 12039–12051 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.232

    Article  Google Scholar 

  43. M.M. Mumtaz, H. Nazir, B. Hussain, S. Ullah, M. Ali, AC-conduction mechanism in SiO2-coated BaFe2O4 nanoparticles. Appl. Phys. A 128(4), 285 (2022). https://doi.org/10.1007/s00339-022-05421-3

    Article  ADS  Google Scholar 

  44. B.C. Reddy, Y.S. Vidya, H.C. Manjunatha, K.N. Sridhar, U.M. Pasha, L. Seenappa, B. Sadashivamurthy, N. Dhananjaya, B.M. Sankarshan, S. Krishnaveni, K.V. Sathish, P.S.D. Gupta, Synthesis and characterization of Barium ferrite nano-particles for X-ray/gamma radiation shielding and display applications. Prog. Nucl. Energy 147, 104187 (2022). https://doi.org/10.1016/j.pnucene.2022.104187

    Article  Google Scholar 

  45. Cristallography—Hexagonal Crystal System I | PDF | Crystal Structure | Crystallography, (2022) https://www.scribd.com/document/84139606/Cristallography-Hexagonal-Crystal-System-I. Accessed 28 Feb 2022

  46. Structure and lattice distortions of orthorhombic crystals with 3d ions, https://www.researchgate.net/publication/225431240_Structure_and_lattice_distortions_of_orthorhombic_crystals_with_3d_ions. Accessed 28 Feb 2022

  47. C. Baerlocher, L.B. McCusker, Practical aspects of powder diffraction data analysis. Stud. Surf. Sci. Catal. 85(C), 391–428 (1994). https://doi.org/10.1016/S0167-2991(08)60775-2

    Article  Google Scholar 

  48. G.B. Teh, Y.C. Wong, R.D. Tilley, Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. J. Magn. Magn. Mater. 323(17), 2318–2322 (2011). https://doi.org/10.1016/J.JMMM.2011.04.014

    Article  ADS  Google Scholar 

  49. M.A. Ashraf, W. Peng, Y. Zare, K.Y. Rhee, Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett. 13(1), 1–7 (2018). https://doi.org/10.1186/S11671-018-2624-0/FIGURES/5

    Article  Google Scholar 

  50. M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J. Magn. Magn. Mater. 460, 268–277 (2018). https://doi.org/10.1016/j.jmmm.2018.03.069

    Article  ADS  Google Scholar 

  51. P. Shen, J. Luo, Y. Zuo, Z. Yan, K. Zhang, Effect of La-Ni substitution on structural, magnetic and microwave absorption properties of barium ferrite. Ceram. Int. 6(43), 4846–4851 (2017). https://doi.org/10.1016/J.CERAMINT.2016.12.107

    Article  Google Scholar 

  52. R. Dilip, R. Jayaprakash, Requisite of surfactant (ctab, n-heptane, and tri-sodium citrate) levels on enhancement of magnetic property and morphology changes of barium ferrite (BaFe2O4) nanoparticles. J. Supercond. Novel Magn. 33(12), 3799–3808 (2020). https://doi.org/10.1007/S10948-020-05645-5

    Article  Google Scholar 

  53. T. Kaur, S. Kumar, B.H. Bhat, B. Want, A.K. Srivastava, Effect on dielectric, magnetic, optical, and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 119(4), 1531–1540 (2015). https://doi.org/10.1007/S00339-015-9134-Z/FIGURES/11

    Article  ADS  Google Scholar 

  54. G. Agostini, C. Lamberti, Characterization of semiconductor heterostructures and nanostructures (Elsevier, Amsterdam, 2008). https://doi.org/10.1016/B978-0-444-53099-8.X0001-2

    Book  Google Scholar 

  55. A.A. Argyri, R.M. Jarvis, D. Wedge, Y. Xu, E.Z. Panagou, R. Goodacre, G.-J.E. Nychas, A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control 29(2), 461–470 (2013). https://doi.org/10.1016/j.foodcont.2012.05.040

    Article  Google Scholar 

  56. P.M.V. Raja, A.R. Barron, Physical methods in chemistry and nano science. LibreTexts 4.3.1–4.3.12 (2022)

  57. X.-F. Qu, Q.-Z. Yao, G.-T. Zhou, S.-Q. Fu, J.-L. Huang, Formation of hollow magnetite microspheres and their evolution into Durian-like architectures. J. Phys. Chem. (2010). https://doi.org/10.1021/jp912278r

    Article  Google Scholar 

  58. RAMAN Band Correlation Table. https://www.chem.uci.edu/~dmitryf/manuals/Raman%20correlations.pdf

  59. Raman bands explained (renishaw.com). https://www.renishaw.com/en/raman-bands-explained--25808

  60. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, M. Hajdúchová, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance, and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. (2017). https://doi.org/10.1088/2043-6254/aa853

    Article  Google Scholar 

  61. S.F. Basante-Delgado, D. González-Vidal, J.A. Morales-Morales, W.A. Aperador-Chaparro, J.A. Gómez-Cuaspud, A preliminary study of oxides of Fe doped with Ba Co, Cu and synthetized by the citrate sol–gel combustion route. J. Phys. (2020). https://doi.org/10.1088/1742-6596/1541/1/012013

    Article  Google Scholar 

  62. S. Shah, O.P. Pandey, J. Mohammed, A.K. Srivastava, A. Gupta, D. Basandrai, Reduced graphene oxide (RGO) induced modification of optical and magnetic properties of M-type nickel doped barium hexaferrite. J. Sol-Gel. Sci. Technol. (2020). https://doi.org/10.1007/s10971-019-05210-0

    Article  Google Scholar 

  63. K.S. Martirosyan, E. Galstyan, S.M. Hossain, Y.J. Wang, D. Litvinov, Barium hexaferrite nanoparticles: synthesis and magnetic properties. Mater. Sci. Eng. B 176(1), 8–13 (2011). https://doi.org/10.1016/J.MSEB.2010.08.005

    Article  Google Scholar 

  64. U. Topal, H. Ozkan, H. Sozeri, Synthesis and characterization of nanocrystalline BaFe12O19 obtained at 850 °C by using ammonium nitrate melt. J. Magn. Magn. Mater. 284(1–3), 416–422 (2004). https://doi.org/10.1016/J.JMMM.2004.07.009

    Article  ADS  Google Scholar 

  65. G.R. Gajula, L.R. Buddiga, K.N. Chidambara Kumar, M. Dasari, Study on electric modulus, complex modulus, and conductivity properties of Nb/Sm, Gd doped barium titanate-lithium ferrite ceramic composites. Results Phys. 17, 103076 (2020). https://doi.org/10.1016/J.RINP.2020.103076

    Article  Google Scholar 

  66. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1–x/4O3 ceramics. J. Alloys Compd. 509(22), 6388–6394 (2011). https://doi.org/10.1016/J.JALLCOM.2011.03.003

    Article  Google Scholar 

  67. S.T. Assar, H.F. Abosheiasha, M.K. el Nimr, Study of the dielectric behavior of Co-Ni–Li nano ferrites. J. Magn. Magn. Mater. 350, 12–18 (2014). https://doi.org/10.1016/J.JMMM.2013.09.022

    Article  ADS  Google Scholar 

  68. S.A. Saafan, A.S. Seoud, R.E. el Shater, Theoretical investigation of some experimental data of Al-substituted MnZn spinel ferrites. Physica B 365(1–4), 27–42 (2005). https://doi.org/10.1016/J.PHYSB.2005.04.034

    Article  ADS  Google Scholar 

  69. Chandra Babu Naidu, K., Narasimha Reddy, V., Sofi Sarmash, T., Kothandan, D., Subbarao, T., & Suresh Kumar, N. Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system. J. Aust. Ceram. Soc. 55(1), 201–218 (2019). https://doi.org/10.1007/s41779-018-0225-0

    Article  Google Scholar 

  70. Direct and Indirect Band Gap Semiconductors, (2022). https://www.doitpoms.ac.uk/tlplib/semiconductors/direct.php. Accessed 4 May 2022

  71. An Introduction to Fluorescence Spectroscopy. PerkinElmer Ltd. 5–32. https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/Fluorescence%20Spectroscopy.pdf

  72. Photoluminescence spectroscopy uncovers photovoltaic properties–HORIBA, (2022). https://www.horiba.com/int/spectroscopy-matters/photoluminescence-spectroscopy-uncovers-photovoltaic-properties/. Accessed 4 May 2022

  73. Y. Zhang, Y. Wang, J. Qi, Y. Tian, M. Sun, J. Zhang, T. Hu, M. Wei, Y. Liu, J. Yang, Enhanced magnetic properties of BiFeO3 thin films by doping: analysis of structure and morphology. Nanomaterials (2018). https://doi.org/10.3390/NANO8090711

    Article  Google Scholar 

  74. Mark Fedkin, John A. Dutten, e-education institute, Penn State University, (2020). https://www.e-education.psu.edu/eme812/node/508

  75. Anka Baranski. Advantages and Disadvantages of Concentrated Solar Cell. Profolus (2018). https://www.profolus.com/topics/advantages-and-disadvantages-of-concentrated-solar-power/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Hussain Gul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I.S., Gul, I.H. Comparative investigation of magnetic, di-electric, optical, and electrical properties of mono-BaFe2O4 and hexa-BaFe12O19 nano-ferrites for photovoltaic (PV) applications. Appl. Phys. A 128, 1109 (2022). https://doi.org/10.1007/s00339-022-06214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06214-4

Keywords

Navigation