Skip to main content
Log in

Skyrmion dynamics and stability in magnetic nanowire

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Skyrmions are the smallest stable magnetic textures and they could be considered ideal elements for ultra-dense magnetic memories. The size and the speed of the skyrmions are crucial characteristics for their proper functionality. In this study, the modified Landau–Lifshitz–Gilbert formalism is carried out to understand the correlation between the physical properties and skyrmion performances such as stability, size and motion speed. The magnetic anisotropy, Dzyaloshinskii–Moriya interaction, exchange coupling and saturation magnetization are varied and magnetization dynamics is evaluated. It is found that all parameters mentioned can affect the speed and dimension of the skyrmion. The calculations are conducted using nanosecond pulsed current. In summary, a phase diagram combining several parameters is established, which could define the optimal conditions for achieving small-sized skyrmions that can be displaced with high velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)

    ADS  Google Scholar 

  2. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature 465, 901 (1960)

    ADS  Google Scholar 

  3. T. Moriya, Phys. Rev. 120, 91 (1960)

    ADS  Google Scholar 

  4. I.E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964)

    Google Scholar 

  5. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. Von Bergmann, A. Kubetzka, R. Wiesendanger, Science 341, 636 (2013)

    ADS  Google Scholar 

  6. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nat. Nanotechnol. 8, 839 (2013)

    ADS  Google Scholar 

  7. S. Woo, K. Litzius, B. Krüger, M-Y. M. Im, L. Caretta, K. Richter, M. Mann, A. Krone, M. Robert. R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. Mawass, P. Fischer, M. Kläui and G. S. D. Beach, Nat. Mater. 15 501 (2016).

  8. J. Ding, X. Yang, T. Zhu, J. Phys. D 48, 115004 (2015)

    ADS  Google Scholar 

  9. F. Büttner, I. Lemesh, M. Schneider, B. Pfau, C.M. Günther, P. Hessing, J. Geilhufe, L. Caretta, D. Engel, B. Krüger, J. Viefhaus, S. Eisebitt, G.S.D. Beach, Nat. Nanotechnol. 12, 1040 (2017)

    ADS  Google Scholar 

  10. X. Yu, X. Yu, D. Morikawa, Y. Tokunaga, M. Kubota, T. Kurumaji, H. Oike, M. Nakamura, F. Kagawa, Y. Taguchi, T. Arima, M. Kawasaki, Y. Tokura, Adv. Mater. 6, 1606178 (2017)

    Google Scholar 

  11. W. Wang, D. Song, W. Wei, P. Nan, S. Zhang, B. Ge, M. Tian, J. Zang, H. Du, Nat. Comm. 13, 1593 (2022)

    ADS  Google Scholar 

  12. W. Al Saidi, and R. Sbiaa, Sci. Rep. 12 10141 (2022).

  13. S. Li, W. Kang, Y. Huang, X. Zhang, Y. Zhou and W. Zhao, Nanotechnology 28 31LT01 (2017).

  14. D. Prychynenko, M. Sitte, K. Litzius, B. Krüger, G. Bourianoff, M. Kläui, J. Sinova, K. Everschor-Sitte, Phys. Rev. Appl. 9, 014034 (2018)

    ADS  Google Scholar 

  15. K.M. Song, J. Jeong, B. Pan, X. Zhang, J. Xia, S. Cha, T. Park, K. Kim, S. Finizio, J. Raabe, J. Chang, Y. Zhou, W. Zhao, W. Kang, H. Ju, S. Woo, Nat. Electron. 3, 148 (2020)

    Google Scholar 

  16. R. Sbiaa, Phys. Stat. Solidi-RRL 15, 2100125 (2021)

    Google Scholar 

  17. G. Finocchio, M. Ricci, R. Tomasello, A. Giordano, M. Lanuzza, V. Puliafito, P. Burrascano, B. Azzerboni, M. Carpentieri, Appl. Phys. Lett. 107, 262401 (2015)

    ADS  Google Scholar 

  18. L. Peng, K. Karube, Y. Taguchi, N. Nagaosa, Y. Tokura, X. Yu, Nat. Comm. 12, 6797 (2021)

    ADS  Google Scholar 

  19. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 924, 077205 (2004)

    ADS  Google Scholar 

  20. M. Kläui, H. Ehrke, U. Rüdiger, Appl. Phys. Lett. 87, 102509 (2005)

    ADS  Google Scholar 

  21. G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Nature Mater. 4, 741 (2005)

    ADS  Google Scholar 

  22. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    ADS  Google Scholar 

  23. T.H.E. Lahtinen, K.J.A. Franke, S. van Dijken, Sci. Rep. 2, 258 (2012)

    Google Scholar 

  24. R. Sbiaa, S.N. Piramanayagam, Appl. Phys. A 114, 1347 (2014)

    ADS  Google Scholar 

  25. K.-J. Kim, S.K. Kim, Y. Hirata, S.-H. Oh, T. Tono, D.-H. Kim, T. Okuno, W.S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K.-J. Lee, T. Ono, Nat. Mater. 16, 1187 (2017)

    ADS  Google Scholar 

  26. H. Mohammed, S. Al Risi, T. L. Jin, J. Kosel, S. N. Piramanayagam and R. Sbiaa, Appl. Phys. Lett. 116 032402 (2020).

  27. D. Bhattacharya, S.A. Razavi, H. Wu, B. Dai, K.L. Wang, Nat Electron 3, 539 (2020)

    Google Scholar 

  28. Z. Wang, M. Guo, H.A. Zhou, L. Zhao, T. Xu, R. Tomasello, H. Bai, Y. Dong, S.-G. Je, W. Chao, H.-S. Han, S. Lee, K.-S. Lee, Y. Yao, W. Han, C. Song, H. Wu, M. Carpentieri, G. Finocchio, M.-Y. Im, S.-Z. Lin, W. Jiang, Nat Electron 3, 672 (2020)

    Google Scholar 

  29. K. Gerlinger, B. Pfau, F. Büttner, M. Schneider, L.-M. Kern, J. Fuchs, D. Engel, Christian M. Günther, M. Huang, I. Lemesh, L. Caretta, A. Churikova, P. Hessing, C. Klose,1 C. Strüber, C. von Korff Schmising, S. Huang, A. Wittmann, Kai Litzius, D. Metternich, R. Battistelli, K. Bagschik, A. Sadovnikov, G. S. D. Beach, and S. Eisebitt, Appl. Phys. Lett. 118 192403 (2021).

  30. T. Yokouchi, S. Sugimoto, B. Rana, S. Seki, N. Ogawa, S. Kasai, Y. Otani, Nat. Nanotechnol. 15, 361 (2020)

    ADS  Google Scholar 

  31. A. Casiraghi, H. Corte-León, M. Vafaee, F. Garcia-Sanchez, G. Durin, M. Pasquale, G. Jakob, M. Kläui, O. Kazakova, Comm. Phys. 2, 145 (2019)

    ADS  Google Scholar 

  32. W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis, C. Moreau-Luchaire, S. Collin, K. Bouzehouane, V. Cros, A. Fert, Nano Lett. 17, 2703 (2017)

    ADS  Google Scholar 

  33. S. Woo, K. M. Song, H.-S. Han, M.-S. Jung, Mi-Y. Im, K.-S. Lee, K. S. Song, P. Fischer, J.-I. Hong, J. W. Choi, B.-C. Min, H. C. Koo and J. Chang, Nat. Comm. 8 15573 (2017).

  34. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, AIP Adv. 4, 107133 (2014)

    ADS  Google Scholar 

  35. R. Sbiaa, J. M. Shaw, H. T. Nembach, M. Al Bahri, M. Ranjbar, J. Akerman and S. N. Piramanayagam J. Phys. D: Appl. Phys. 49 425002 (2016).

  36. W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Hoffmann, S.G.E. te Velthuis, Nat. Phys. 13, 162 (2016)

    Google Scholar 

  37. Y. Ishida, K. Kondo, J. Magn. Magn. Mater. 493, 165687 (2020)

    Google Scholar 

  38. R. Brearton, L.A. Turnbull, J.A.T. Verezhak, G. Balakrishnan, P.D. Hatton, G. van der Laan, T. Hesjedal, Nat Comm. 12, 2723 (2021)

    ADS  Google Scholar 

  39. T. Kalaycı, C. Deger, S. Akbulut, F. Yildiz, J. Magn. Magn. Mater. 436, 11 (2017)

    ADS  Google Scholar 

  40. S. Pal, B. Rana, O. Hellwig, T. Thomson, A. Barman, Appl. Phys. Lett. 98, 082501 (2011)

    ADS  Google Scholar 

  41. K. Yakushiji, T. Saruya, H. Kubota, A. Fukushima, T. Nagahama, S. Yuasa, K. Ando, Appl. Phys. Lett. 97, 232508 (2010)

    ADS  Google Scholar 

  42. J.M. Shaw, H.T. Nembach, T.J. Silva, Appl. Phys. Lett. 105, 062406 (2014)

    ADS  Google Scholar 

  43. A. Al Subhi and R. Sbiaa, J. Magn. Magn. Mater. 489 165460 (2019).

  44. M. Belmeguenai, J.-P. Adam, Y. Roussigné, S. Eimer, T. Devolder, J.-V. Kim, S.M. Cherif, A. Stashkevich, A. Thiaville, Phys. Rev. B 91, 180405(R) (2015)

    ADS  Google Scholar 

  45. M. Baćani, M.A. Marioni, J. Schwenk, H.J. Hug, Sci. Rep. 9, 3114 (2019)

    ADS  Google Scholar 

  46. S.K. Jena, R. Islam, E. Milińska, M.M. Jakubowski, R. Minikayev, S. Lewińska, A. Lynnyk, A. Pietruczik, P. Aleszkiewicz, C. Autieri, A. Wawro, Nanoscale 13, 7685–7693 (2021)

    Google Scholar 

  47. I. Gross, L.J. Martínez, J.-P. Tetienne, T. Hingant, J.-F. Roch, K. Garcia, R. Soucaille, J.P. Adam, J.-V. Kim, S. Rohart, A. Thiaville, J. Torrejon, M. Hayashi, V. Jacques, Phys. Rev. B 94, 064413 (2016)

    ADS  Google Scholar 

  48. S. Tacchi, R.E. Troncoso, M. Ahlberg, G. Gubbiotti, M. Madami, J. Åkerman, P. Landeros, Phys. Rev. Lett. 118, 147201 (2017)

    ADS  Google Scholar 

  49. A.K. Chaurasiya, S. Choudhury, J. Sinha, A. Barman, Phys. Rev. Applied 9, 014008 (2018)

    ADS  Google Scholar 

  50. C.P. Chui, F. Ma, Y. Zhou, AIP Adv. 5, 047141 (2015)

    ADS  Google Scholar 

  51. C. Deger, I. Yavuz, F. Yildiz, Sci. Rep. 9, 3513 (2019)

    ADS  Google Scholar 

  52. R. Chen, Y. Li, V.F. Pavlidis, C. Moutafis, Phys. Rev. Res. 2, 043312 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from HMTF Strategic Research of Oman (grant no. SR/SCI/PHYS/20/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sbiaa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naabi, S.A., Sbiaa, R. Skyrmion dynamics and stability in magnetic nanowire. Appl. Phys. A 128, 1059 (2022). https://doi.org/10.1007/s00339-022-06211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06211-7

Keywords

Navigation