Skip to main content
Log in

Study on the sinusoidal honeycomb core metamaterial sandwich panel with high-performance and low-velocity impact resistance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a sinusoidal honeycomb sandwich panel structure with negative Poisson’s ratio is studied. The impact dynamic response of sandwich panel with two kinds of in-plane and out-of-plane with sinusoidal honeycomb structure with the same relative density and different amplitudes at different impact speeds was studied based on ANSYS finite-element software. At different speeds, the sandwich panel impact process is divided into three stages, (a) partial perforation, (b) impact limit, and (c) full perforation. In the stages (a) and (b), the sinusoidal honeycomb is superior to the conventional honeycomb sandwich panel. When reaching the stage (c), the impact reaches the limit, the amplitude increases but the energy decreases, and the energy is almost unchanged when the speed is changed. The results show that the impact resistance of the sinusoidal honeycomb structure is directly related to its amplitude and impact velocity, compared with the conventional quadrangular honeycomb structure, the negative Poisson’s ratio effect of the sinusoidal honeycomb structure can improve the energy absorption capacity of the panel and have better impact resistance, which provides a reference for the design of improving the impact resistance of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 
Fig. 7 
Fig. 8 
Fig. 9 
Fig. 10 
Fig. 11 
Fig. 12
Fig. 13
Fig. 14 
Fig. 15
Fig. 16
Fig. 17 
Fig. 18  
Fig. 19
Fig. 20
Fig. 21 
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. N. Gupta, A functionally graded syntactic foam material for high energy absorption under compression [J]. Mater. Lett. 61(4–5), 979–982 (2007)

    Google Scholar 

  2. B. Brandel, R.S. Lakes, Negative Poisson’s ratio polyethylene foams [J]. J. Mater. Sci. 36(24), 5885–5893 (2001)

    ADS  Google Scholar 

  3. W. Johnson, S.R. Reid, Metallic energy dissipating systems [J]. Appl. Mech. Rev. 31(3), 277–288 (1978)

    Google Scholar 

  4. M.A. Yahaya, D. Ruan, G. Lu et al., Response of aluminium honeycomb sandwich panels subjected to foam projectile impact-An experimental study[J]. Int. J. Impact. Eng. 75, 100–109 (2015)

    Google Scholar 

  5. O. Bouaziz, J.P. Masse, S. Allain et al., Compression of crumpled aluminum thin foils and comparison with other cellular materials [J]. Mater. Sci. Eng. A 570, 1–7 (2013)

    Google Scholar 

  6. X. Jin, Z. Wang, J. Ning et al., Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Compos. Part B Eng. 106, 206–217 (2016)

    Google Scholar 

  7. K.E. Evans, The design of doubly curved sandwich panels with honeycombcores [J]. Compos. Struct. 17(2), 95–111 (1991)

    Google Scholar 

  8. Y. Wei, Z.M. Li, S. Wei et al., Review on auxetic materials [J]. J. Mater. Sci. 39(10), 3269–3279 (2004)

    ADS  Google Scholar 

  9. J.N. Grima, R. Gatt, P.S. Farrugia, On the properties of auxetic meta-tetrachiral structures [J]. Phys. Status Sol. 245(3), 511–520 (2010)

    ADS  Google Scholar 

  10. J.N. Grima, R. Gatt, A. Alderson et al., On the potential of connected stars as auxetic systems [J]. Mol. Simul. 31(13), 925–935 (2005)

    Google Scholar 

  11. W. Hui, H. Ohtaki, S. Kotosaka et al., A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model [J]. Eur. J. Mech. A. Sol. 23(1), 95–106 (2004)

    MATH  Google Scholar 

  12. D. Li, L. Dong, R.S. Lakes, A unit cell structure with tunable Poisson’s ratio from positive to negative [J]. Mater. Lett. 164, 456–459 (2016)

    Google Scholar 

  13. J.B. Choi, R.S. Lakes, Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio [J]. Int. J. Mech. 37(1), 51–59 (1995)

    MATH  Google Scholar 

  14. D. Li, J. Ma, L. Dong et al., Stiff square structure with a negative Poisson’s ratio [J]. Mater. Lett. 188, 149–151 (2017)

    Google Scholar 

  15. K. Bertoldi, P.M. Reis, S. Willshaw et al., Negative Poisson’s ratio behavior induced by an elastic instability [J]. Adv. Mater. 22(3), 361–366 (2010)

    Google Scholar 

  16. N. K. Naik, Ballistic impact behavior of composites. in Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, (2016) 425–470. https://doi.org/10.1016/B978-0-08-100080-9.00015-4

  17. E. Klaseboer, K.C. Hung, C. Wang et al., Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. J. Fluid Mech. 537(1), 387–413 (2005)

    ADS  MATH  Google Scholar 

  18. Y. Chem, Z.P. Tong, H.X. Hua et al., Experimental investigation on the dynamic response of scaled ship model with rubber sandwich coatings subjected to underwater explosion [J]. Int. J. Impact Eng. 36(2), 318–328 (2009)

    Google Scholar 

  19. H. Nakamoto, T. Adachi, W. Araki, In-plane impact behavior of honeycomb structures randomly filled with rigid inclusions [J]. Int. J. Impact Eng. 36(1), 73–80 (2009)

    Google Scholar 

  20. X. Qiu, V.S. Deshpande, N.A. Fleck, Dynamic response of a clamped circular sandwich plate subject to shock loading [J]. J. Appl. Mech. 71(5), 637–645 (2004)

    ADS  MATH  Google Scholar 

  21. I.I. Argatov, R. Guinovart-Diaz, F.J. Sabina, On local indentation and impactcompliance of isotropic auxetic materials from the continuum mechanics viewpoint [J]. Int. J. Eng. Sci. 54, 42–57 (2012)

    Google Scholar 

  22. R. Lakes, Advances in negative Poisson’s ratio materials [J]. Adv. Mater. 5(4), 293–296 (2010)

    Google Scholar 

  23. G. Palomba, G. Epasto, V. Crupi et al., Single and double-layer honeycomb sandwich panels under impact loading [J]. Int. J. Impact Eng. 121, 77–90 (2018)

    Google Scholar 

  24. V. Crupi, G. Epasto, E. Guglielmino, Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading [J]. Int. J. Impact Eng. 43, 6–15 (2012)

    Google Scholar 

  25. D. Zhang, Q. Fei, P. Zhang, Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor [J]. Compos. Struct. 168(MAY), 633–645 (2017)

    Google Scholar 

  26. L.L. Hu, Z.R. Luo, Z.Y. Zhang et al., Mechanical property of re-entrant anti-trichiral honeycombs under large deformation-science direct [J]. Compos. B Eng. 163, 107–120 (2019)

    Google Scholar 

  27. W. Becker, Closed-form analysis of the thickness effect of regular honeycomb core material-science direct [J]. Compos. Struct. 48(1–3), 67–70 (2000)

    Google Scholar 

  28. M.P. Wolcott, Cellular solids: structure and properties [J]. Mater. Sci. Eng. A 123(2), 282–283 (1990)

    MathSciNet  Google Scholar 

  29. S. Lee, F. Barthelat, J.W. Hutchinson et al., Dynamic failure of metallic pyramidal truss core materials-experiments and modelling [J]. Int. J. Plast 22(11), 2118–2145 (2006)

    MATH  Google Scholar 

  30. S.D. Papka, S. Kyriakides, In-plane compressive response and crushing of honeycomb [J]. J. Mech. Phys. Sol. 42(10), 1499–1532 (2015)

    ADS  Google Scholar 

  31. S.D. Papka, S. Kyriakides, In-plane crushing of a polycarbonate honeycomb [J]. Int. J. Sol. Struct. 35(3), 239–267 (1998)

    MATH  Google Scholar 

  32. L.L. Hu, T.X. Yu, Z.Y. Gao et al., The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression [J]. Int. J. Mech. Sci. 50(7), 1224–1236 (2008)

    Google Scholar 

  33. J.X. Qiao, C.Q. Chen, Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs [J]. Int. J. Impact Eng. 83, 47–58 (2015)

    Google Scholar 

  34. C. Lira, P. Innocenti, F. Scarpa, Transverse elastic shear of auxetic multi re-entrant honeycombs [J]. Compos. Struct. 90(3), 314–322 (2009)

    Google Scholar 

  35. D. Prall, R.S. Lakes, Properties of a chiral honeycomb with a Poisson’s ratio of -1[J]. Int. J. Mech. Sci. 39(3), 305–314 (1997)

    MATH  Google Scholar 

  36. J.F. Davalos, P. Qiao, V. Ramayanam et al., Torsion of honeycomb FRP sandwich beams with a sinusoidal core configuration [J]. Compos. Struct. 88(1), 97–111 (2009)

    Google Scholar 

  37. J. Shen, J. Ge, J. Xiao et al., In-plane impact dynamics of honeycomb structure containing curved reentrant sides with negative Poisson’s ratio effect [J]. Mech. Adv. Mater. Struct. 10, 1–9 (2020)

    Google Scholar 

  38. D. Wang, Impact behavior and energy absorption of paper honeycomb sandwich panels [J]. Int. J. Impact Eng. 36(1), 110–114 (2009)

    Google Scholar 

  39. Y. Fan, Y. Wang, The effect of negative Poisson’s ratio on the low-velocityimpact response of an auxetic nanocomposite laminate beam [J]. Int. J. Mech. Mater. Des. 11, 1–17 (2020)

    Google Scholar 

  40. W. Hou, Z. Feng, G. Lu et al., Ballistic impact experiments of metallic sandwich panels with aluminium foam core [J]. Int. J. Impact Eng. 37(10), 1045–1055 (2010)

    Google Scholar 

  41. R.F. Recht, Ballistic perforation dynamics [J]. Appl. Mech. 30(3), 384–390 (1963)

    Google Scholar 

  42. J.N. Grima, K.E. Evans, Auxetic behavior from rotating triangles [J]. J. Mater. Sci. 41(10), 3193–3196 (2006)

    ADS  Google Scholar 

  43. V. Crupi, G. Epasto, E. Guglielmino, Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam [J]. Mar. Struct. 30, 74–96 (2013)

    Google Scholar 

  44. K.L. Alderson, K.E. Evans, Strain-dependent behaviour of microporous polyethylene with a negative Poisson’s ratio [J]. J. Mater. Sci. 28(15), 4092–4098 (1993)

    ADS  Google Scholar 

  45. P.J. Neale, K.L. Al De Rson, A.P. Pickles et al., Negative Poisson’s ratio of microporous polyethylene in compression [J]. J. Mater. Sci. Lett. 12(19), 1529–1532 (1993)

    Google Scholar 

  46. S.R. Reid, T.Y. Reddy, Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to end impact-I. Fixed-ended systems [J]. Int. J. Impact Eng. 1(1), 85–106 (1983)

    Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grant No. 12072222, 12132010, 12021002, 11991032), the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (Grant No. SKLTESKF1901), and the Aeronautical Science Foundation of China (Grant No. ASFC-201915048001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-tao Sun or Ya-jun Xin.

Ethics declarations

Conflict of interest

The authors declare that they do not have any financial and personal relationships with other people or organizations that represent a conflict of interest in connection with the manuscript submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Sl., Yang, Hy., Geng, C. et al. Study on the sinusoidal honeycomb core metamaterial sandwich panel with high-performance and low-velocity impact resistance. Appl. Phys. A 128, 1092 (2022). https://doi.org/10.1007/s00339-022-06192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06192-7

Keywords

Navigation