Skip to main content
Log in

Anomalous ferroelectricity in nanocomposites from hydrogen-bonded ferroelectrics with oxidized MWCNT

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work reports anomalous ferroelectric properties of two nanocomposites containing oxidized multiwalled carbon nanotubes (ox-MWCNT) as an electrically conductive filler combined with each of hydrogen-bonded ferroelectrics of potassium dihydrogen phosphate (KDP) and triglycine sulfate (TGS). It was shown that the influence of ox-MWCNT led to the anomalous increase in a phase transition point, domain-wall freezing temperatures and coercive fields in ferroelectric parts of the composites. The OH radicals equipped on the carbon nanotube surface after oxidation were responsible for the observed anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. D. Baohui, S.U. Mu Haq, S.H. Din, S. Wenyi, W. Jingmin, C. Hanwen, Z. Ye, L. Zhu, Low-temperature monitoring of SF6 decomposition products based on CeO2@MWCNTs composite sensor. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.165192

    Article  Google Scholar 

  2. B. Zhou, C. Li, Y. Zhou, Z. Liu, X. Gao, X. Wang, L. Jiang, M. Tian, F.-L. Zhou, S. Jerrams, J. Yu, A flexible dual-mode pressure sensor with ultra-high sensitivity based on BTO@MWCNTs core-shell nanofibers. Compos. Sci. Technol. 224, 109478 (2022). https://doi.org/10.1016/j.compscitech.2022.109478

    Article  Google Scholar 

  3. J.H. Liu, L. Saravanan, H.Y. Miao, L.C. Wang, Investigation of microwave absorption properties of multiwalled nanotube buckypaper filled with cobalt nanoparticles. Mater. Res. Innov. (2014). https://doi.org/10.1179/1432891714Z.000000000590

    Article  Google Scholar 

  4. T.I.T. Kudin, N.F.A. Zainal, A.M.M. Ali, S. Abdullah, M. Rusop, M.A. Sulaiman, M.Z.A. Yahya, Electrochemical performance of anode material from palm oils derived carbon nanotubes for lithium ion batteries. Mater. Res. Innov. 13, 269–271 (2009). https://doi.org/10.1179/143307509X440497

    Article  Google Scholar 

  5. I. Butnaru, A.P. Chiriac, C.P. Constantin, M.D. Damaceanu, Insights into MWCNTs/polyimide nanocomposites: from synthesis to application as free-standing flexible electrodes in low-cost micro-supercapacitors. Mater. Today Chem. 23, 100671 (2022). https://doi.org/10.1016/j.mtchem.2021.100671

    Article  Google Scholar 

  6. T. Ambreen, A. Saleem, M.K.A. Tanveer, S.A. Shehzad, C.W. Park, Irreversibility and hydrothermal analysis of the MWCNTs/GNPs-based nanofluids for electronics cooling applications of the pin-fin heat sinks: Multiphase Eulerian-Lagrangian modeling. Case Stud. Therm. Eng. 31, 101806 (2022). https://doi.org/10.1016/j.csite.2022.101806

    Article  Google Scholar 

  7. Z. Špitalský, C.A. Krontiras, S.N. Georga, C. Galiotis, Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos. Part A Appl. Sci. Manuf. 40, 778–783 (2009). https://doi.org/10.1016/j.compositesa.2009.03.008

    Article  Google Scholar 

  8. L. Lavagna, M. Bartoli, D. Suarez-Riera, D. Cagliero, S. Musso, M. Pavese, Oxidation of carbon nanotubes for improving the mechanical and electrical properties of oil-well cement-based composites. ACS Appl. Nano Mater. 5, 6671–6678 (2022). https://doi.org/10.1021/acsanm.2c00706

    Article  Google Scholar 

  9. H. Haruna, M.E. Pekdemir, A. Tukur, M. Coşkun, Characterization, thermal and electrical properties of aminated PVC / oxidized MWCNT composites doped with nanographite. J. Therm. Anal. Calorim. 139, 3887–3895 (2020). https://doi.org/10.1007/s10973-019-09184-7

    Article  Google Scholar 

  10. S. Liang, G. Li, R. Tian, Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J. Mater. Sci. 51, 3513–3524 (2016). https://doi.org/10.1007/s10853-015-9671-z

    Article  ADS  Google Scholar 

  11. M.R. Mahdavi, M. Delnavaz, V. Vatanpour, Fabrication and water desalination performance of piperazine–polyamide nanocomposite nanofiltration membranes embedded with raw and oxidized MWCNTs. J. Taiwan Inst. Chem. Eng. 75, 189–198 (2017). https://doi.org/10.1016/j.jtice.2017.03.039

    Article  Google Scholar 

  12. D. Prasad, K.N. Patil, N. Sandhya, C.R. Chaitra, J.T. Bhanushali, A.K. Samal, R.S. Keri, A.H. Jadhav, B.M. Nagaraja, Highly efficient hydrogen production by hydrolysis of NaBH4 using eminently competent recyclable Fe2O3 decorated oxidized MWCNTs robust catalyst. Appl. Surf. Sci. 489, 538–551 (2019). https://doi.org/10.1016/j.apsusc.2019.06.041

    Article  ADS  Google Scholar 

  13. M. Bhaumik, S. Agarwal, V.K. Gupta, A. Maity, Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent. J. Colloid Interface Sci. 470, 257–267 (2016). https://doi.org/10.1016/j.jcis.2016.02.054

    Article  ADS  Google Scholar 

  14. M. Pei, J. Guo, B. Zhang, H. Wang, Y. Zhu, Q. Wang, K. Tsukagoshi, Y. Shi, Y. Li, Splitting charge injection for ultrahigh on/off ratio in a floating-metal-gated planar organic ferroelectric memory. Mater. Today Energy 21, 100711 (2021). https://doi.org/10.1016/j.mtener.2021.100711

    Article  Google Scholar 

  15. E. Li, X. Wu, Q. Chen, S. Wu, L. He, R. Yu, Y. Hu, H. Chen, T. Guo, Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy 85, 106010 (2021). https://doi.org/10.1016/j.nanoen.2021.106010

    Article  Google Scholar 

  16. K. Wang, H. Zhu, J. Ouyang, Y. Tian, S. Wang, Q. Li, Y.-Y. Zhao, H. Cheng, X. Zhai, Significantly improved energy storage stabilities in nanograined ferroelectric film capacitors with a reduced dielectric nonlinearity. Appl. Surf. Sci. 581, 152400 (2022). https://doi.org/10.1016/j.apsusc.2021.152400

    Article  Google Scholar 

  17. S. Mohammadi, A. Khodayari, P. Mohammadi, Performance enhancement of cylindrical ferroelectric transducers. Ceram. Int. 40, 87–91 (2014). https://doi.org/10.1016/j.ceramint.2013.05.107

    Article  Google Scholar 

  18. R. Irzaman, R.P. Siskandar, H. Jenie, M. Syafutra, B. Iqbal, M.Z. Yuliarto, Fahmi, ferdiansjah, khairurrijal: ferroelectric sensor BaxSr1-xTiO3 integrated with android smartphone for controlling and monitoring smart street lighting. J. King Saud Univ. Sci. 34, 102180 (2022). https://doi.org/10.1016/j.jksus.2022.102180

    Article  Google Scholar 

  19. X. Gou, Y. Liu, N. Jiang, Y. Li, Y. Jiang, J. Chen, Z. Tang, Y. Bai, S. Zhao, Non–ferroelectric intercalation structure based on aurivillius phase Bi4Ti3O12: a research arena to achieve high energy storage performance. Ceram. Int. 48, 9534–9543 (2022). https://doi.org/10.1016/j.ceramint.2021.12.151

    Article  Google Scholar 

  20. B. Deepa, P. Philominathan, Enhanced NLO and antibacterial properties of nicotinic acid-doped KDP crystals: synthesis, growth and characterisation. Mater. Res. Innov. 21, 86–90 (2017). https://doi.org/10.1080/14328917.2016.1191794

    Article  Google Scholar 

  21. M. Anis, D.A. Hakeem, G.G. Muley, Optical and dielectric studies of KH2PO4 crystal influenced by organic ligand of citric acid and l-valine: A single crystal growth and comparative study. Results Phys. 6, 645–650 (2016). https://doi.org/10.1016/j.rinp.2016.09.001

    Article  ADS  Google Scholar 

  22. S. Reyné, G. Duchateau, J.-Y. Natoli, L. Lamaignère, Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation. Opt. Express 17, 21652–21665 (2009). https://doi.org/10.1364/OE.17.021652

    Article  ADS  Google Scholar 

  23. M. Banan, R.B. Lal, A. Batra, Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector applications. J. Mater. Sci. 27, 2291–2297 (1992). https://doi.org/10.1007/BF01105034

    Article  ADS  Google Scholar 

  24. P.R. Deepthi, A. Sukhdev, P.M. Kumar, V.J. Angadi, U.M. Pasha, J. Shanthi, Structural, FTIR and Ferro electric analysis of pure TGS and L-Cysteine doped TGS crystals for infrared device applications. Chem. Data Collect. 17–18, 276–286 (2018). https://doi.org/10.1016/j.cdc.2018.09.007

    Article  Google Scholar 

  25. O. Boni, S. Berger, Dielectric properties of kdp filled porous alumina nanocomposite thin films. J. Nanosci. Nanotechnol. 1, 433–439 (2001). https://doi.org/10.1166/jnn.2001.061

    Article  Google Scholar 

  26. O.M. Golitsyna, S.N. Drozhdin, V.N. Nechaev, A.V. Viskovatykh, V.M. Kashkarov, A.E. Gridnev, V.V. Chernyshev, Dielectric properties of porous aluminum and silicon oxides with inclusions of triglycine sulfate and its modified analogs. Phys. Solid State. 55, 529–535 (2013). https://doi.org/10.1134/S1063783413030128

    Article  ADS  Google Scholar 

  27. B.D. Mai, H.T. Nguyen, D.H. Ta, A.S. Sidorkin, S.D. Milovidova, Preparation and dielectric properties of a mixed ferroelectric composite from nanoparticles of cellulose and triglycine sulfate. Ferroelectrics 543, 175–183 (2019). https://doi.org/10.1080/00150193.2019.1592431

    Article  ADS  Google Scholar 

  28. H.T. Nguyen, P.T.B. Thao, Influence of moisture on ferroelectric–paraelectric phase transition of a composite containing oxidized MWCNT and TGS. Ferroelectr. Lett. Sect. 48, 13–19 (2021). https://doi.org/10.1080/07315171.2021.1923116

    Article  ADS  Google Scholar 

  29. Y.N. Huang, X. Li, Y. Ding, Y.N. Wang, H.M. Shen, Z.F. Zhang, C.S. Fang, S.H. Zhuo, P.C.W. Fung, Domain freezing in potassium dihydrogen phosphate, triglycine sulfate, and CuAlZnNi. Phys. Rev. B. 55, 16159–16167 (1997). https://doi.org/10.1103/PhysRevB.55.16159

    Article  ADS  Google Scholar 

  30. S.A. Gridnev, L.A. Shuvalov, V.V. Gorbatenko, B.N. Prasolov, “Freezing” of domain structure in Rb2ZnCl4. Ferroelectrics 140, 145–149 (1993). https://doi.org/10.1080/00150199308008277

    Article  ADS  Google Scholar 

  31. H.T. Nguyen, M.T. Chau, Structural and dielectric studies of three-phase composite containing multiwalled carbon nanotubes, nanodispersed silica and KDP. Phase Transit. 93, 1080–1088 (2020). https://doi.org/10.1080/01411594.2020.1839753

    Article  Google Scholar 

  32. J. Tao, S.-A. Cao, Flexible high dielectric thin films based on cellulose nanofibrils and acid oxidized multi-walled carbon nanotubes. RSC Adv. 10, 10799–10805 (2020). https://doi.org/10.1039/C9RA10915C

    Article  ADS  Google Scholar 

  33. W.-L. Song, M.-S. Cao, B. Wen, Z.-L. Hou, J. Cheng, J. Yuan, Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption. Mater. Res. Bull. 47, 1747–1754 (2012). https://doi.org/10.1016/j.materresbull.2012.03.045

    Article  Google Scholar 

  34. D. Vorontsov, S. Filonenko, A. Kanak, G. Okrepka, Y. Khalavka, Charge directed assembly of CdTe/CdS nanoparticles inside monocrystalline KH2PO4. CrystEngComm 19, 6804–6810 (2017). https://doi.org/10.1039/C7CE01688C

    Article  Google Scholar 

  35. R.M. Hill, S.K. Ichiki, Infrared absorption by hydrogen bonds in single crystal KH2PO4, KD2PO4, and KH2AsO4. J. Chem. Phys. 48, 838–842 (1968). https://doi.org/10.1063/1.1668722

    Article  ADS  Google Scholar 

  36. N. Sinha, S. Bhandari, H. Yadav, G. Ray, S. Godara, N. Tyagi, J. Dalal, S. Kumar, B. Kumar, Performance of crystal violet doped triglycine sulfate single crystals for optical and communication applications. CrystEngComm 17, 5757–5767 (2015). https://doi.org/10.1039/C5CE00703H

    Article  Google Scholar 

  37. U. Straube, H. Beige, Nonlinear electromechanical behaviour of KDP near its phase transition. J. Alloys Compd. 310, 181–183 (2000). https://doi.org/10.1016/S0925-8388(00)00943-9

    Article  Google Scholar 

  38. M. Trybus, Phase transition in triglycine sulphate investigated using two-phase bridge measurements. Infrared Phys. Technol. 109, 103409 (2020). https://doi.org/10.1016/j.infrared.2020.103409

    Article  Google Scholar 

  39. S.T. Liu, J.D. Zook, Evaluation of curie constants of ferroelectric crystals from pyroelectric response. Ferroelectrics 7, 171–173 (1974). https://doi.org/10.1080/00150197408237985

    Article  ADS  Google Scholar 

  40. D.-H. Kim, J.-J. Kim, Dynamic scaling of hysteresis loop areas in ferroelectric KDP crystal. Ferroelectrics 222, 285–293 (1999). https://doi.org/10.1080/00150199908014828

    Article  ADS  Google Scholar 

  41. H.V. Alexandru, C. Berbecaru, F. Stanculescu, L. Pintilie, I. Matei, M. Lisca, Doped TGS crystals for IR detection and sensors. Sens. Actuators A Phys. 113, 387–392 (2004). https://doi.org/10.1016/j.sna.2004.03.046

    Article  Google Scholar 

  42. H.T. Nguyen, A.S. Sidorkin, S.D. Milovidova, O.V. Rogazinskaya, Investigation of dielectric relaxation in ferroelectric composite nanocrystalline cellulose – triglycine sulfate. Ferroelectrics 498, 27–35 (2016). https://doi.org/10.1080/00150193.2016.1166835

    Article  ADS  Google Scholar 

  43. D. Michel, Test of the formal basis of Arrhenius law with heat capacities. Phys. A Stat. Mech. Appl. 510, 188–199 (2018). https://doi.org/10.1016/j.physa.2018.06.125

    Article  MATH  Google Scholar 

  44. A. Rajani Malathi, V.J. Usha Praveena, M. Sundara Murthy, G. Prasad, Vogel Fulcher analysis of electrical studies of NBT-CT ceramic composites. Mater. Today Proc. 59, 449–458 (2022). https://doi.org/10.1016/j.matpr.2021.11.462

    Article  Google Scholar 

  45. N.M. Galiyarova, Critical slowing down of relaxing domain walls and interfaces in phase transition vicinities. Ferroelectrics 170, 111–121 (1995). https://doi.org/10.1080/00150199508014197

    Article  ADS  Google Scholar 

  46. A. Feisst, P. Koidl, Current induced periodic ferroelectric domain structures in LiNbO3 applied for efficient nonlinear optical frequency mixing. Appl. Phys. Lett. 47, 1125–1127 (1985). https://doi.org/10.1063/1.96349

    Article  ADS  Google Scholar 

Download references

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Contributions

The author HTN contributed to conducting experiments, analyzing data and preparing the manuscript.

Corresponding author

Correspondence to Hoai Thuong Nguyen.

Ethics declarations

Conflict of interests

The author declares that no conflict of interest exists related to the paper entitled “Anomalous ferroelectricity in nanocomposites from hydrogen-bonded ferroelectrics with oxidized MWCNT”. The author declares that the paper is not being under consideration by another journal and has not been published yet.

Ethical approval

The author declare that the materials used in all experiments for the study entitled “Anomalous ferroelectricity in nanocomposites from hydrogen-bonded ferroelectrics with oxidized MWCNT” were not related to human and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T. Anomalous ferroelectricity in nanocomposites from hydrogen-bonded ferroelectrics with oxidized MWCNT. Appl. Phys. A 128, 1032 (2022). https://doi.org/10.1007/s00339-022-06172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06172-x

Keywords

Navigation