Skip to main content
Log in

Synthesis of large-scale SiC@SiO2 nanowires with good optical properties by using Si@SiO2 as silicon source

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple and convenient method was developed for the preparation of a large number of high-purity cotton-like SiC@SiO2 nanowires by thermal evaporation without any catalyst. The Si particles with loose and discontinuous SiO2 coating (marked as Si@SiO2) were prepared by wet oxidation process as the source of silicon, and the high-purity graphite sheets were used as carbon sources. The large-scale of high purity SiC@SiO2 nanowires, which were over 100 μm in length and about 100 nm in diameter, were synthesized by the form of layers assembly of the graphite substrate according to the distribution of gas. The SiC@SiO2 nanowires have high crystallinity with flat and smooth surfaces. The synthesized SiC@SiO2 nanowires include single crystal 3C structures and 3C structures with defects along [111] direction. The distribution of the gas concentration in the reaction vessel and the growth mechanism of the SiC@SiO2 nanowires were studied. Furthermore, the SiC@SiO2 nanowires showed good blue-green photoluminescence (PL) property, which has been expected to make positive progress in the optoelectronic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Jin, B. Zhang, H. Zhang, Z. Zhong, Y. Wang, F. Ye, Q. Liu, Effects of skeleton pore size on the microstructure and electromagnetic absorbing property of the SiC nanowires/SiC composites. Mater. Lett. 295, 129867 (2021). https://doi.org/10.1016/j.matlet.2021.129867

    Article  Google Scholar 

  2. J. Kuang, Q. Qin, T. Xiao, X. Hou, P. Jiang, Q. Wang, W. Cao, Tunable dielectric permittivity and microwave absorption properties of Pt-decorated SiC nanowires prepared by magnetic sputtering. Mater. Lett. 245, 90–93 (2019). https://doi.org/10.1016/j.matlet.2019.02.099

    Article  Google Scholar 

  3. S. Li, H. Li, Q. Su, X. Liu, H. Zhao, M. Ding, K. Liu, W. Nie, Synthesis of p-type 6H-SiC nanowires by pine needle carbothermal method, Mater. Lett., 199 (2017) 113–115.https://doi.org/10.1016/j.matlet.2017.04.047

  4. Q. Zhang, C. Zeng, Z. Wu, Z. Xie, Y. Zou, D. Chen, Preparation of beaded chains ZrC/C/SiC nanocomposites and their microwave absorption properties, Mater. Lett., 255 (2019) 126579.https://doi.org/10.1016/j.matlet.2019.126579

  5. J. Liang, J. Lu, P. Gao, W. Guo, H. Xiao, The crystallization and growth of SiC nanowires converted from self-assembly Si nanorods on carbon fabric and their electrochemical capacitance property, J. Alloys Compd., 827 (2020) 154168.https://doi.org/10.1016/j.jallcom.2020.154168

  6. Z. Shen, J. Chen, B. Li, G. Li, X. Hou, Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials, J. Alloys Compd., 815 (2019) 152388.https://doi.org/10.1016/j.jallcom.2019.152388

  7. J. Chen, J. Zhang, M. Wang, Y. Li, High-temperature hydrogen sensor based on platinum nanoparticle-decorated SiC nanowire device, Sensors and Actuators B-Chemical, 201 (2014) 402–406.https://doi.org/10.1016/j.snb.2014.04.068

  8. Z. Zhang, J. Tan, L. Cheng, W. Yang, In-situ growth of silicon carbide nanofibers on carbon fabric as robust supercapacitor electrode, Ceram. Int., 47 (2021) 24652–24662.https://doi.org/10.1016/j.ceramint.2021.05.187

  9. C.C. Tang, S.S. Fan, H.Y. Dang, J.H. Zhao, C. Zhang, P. Li, Q. Gu, Growth of SiC nanorods prepared by carbon nanotubes-confined reaction, J. Cryst. Growth, 210 (2000) 595–599.https://doi.org/10.1016/s0022-0248(99)00737-x

  10. Z. Liu, Y. Cai, R. Tu, Q. Xu, M. Hu, C. Wang, Q. Sun, B.-W. Li, S. Zhang, C. Wang, T. Goto, L. Zhang, Laser CVD growth of graphene/SiC/Si nano-matrix heterostructure with improved electrochemical capacitance and cycle stability, Carbon, 175 (2021) 377–386.https://doi.org/10.1016/j.carbon.2021.01.004

  11. B.-Y. Chen, C.-C. Chi, W.-K. Hsu, H. Ouyang, Synthesis of SiC/SiO2 core-shell nanowires with good optical properties on Ni/SiO2/Si substrate via ferrocene pyrolysis at low temperature, Sci. Rep., 11 (2021) 233.https://doi.org/10.1038/s41598-020-80580-y

  12. A. Khan, C. Jacob, Random and self-aligned growth of 3C-SiC nanorods via VLS-VS mechanism on the same silicon substrate, Mater. Lett., 135 (2014) 103–106.https://doi.org/10.1016/j.matlet.2014.07.129

  13. S.-C. Chiu, C.-W. Huang, Y.-Y. Li, Synthesis of high-purity silicon carbide nanowires by a catalyst-free arc-discharge method, J. Phys. Chem. C, 111 (2007) 10294–10297.https://doi.org/10.1021/jp0687192

  14. B. Zhu, Y. Cui, D. Lv, P. Liu, H. Wei, J. Bu, Synthesis and electromagnetic wave absorption properties of peanut shell-like SiC fibers, Mater. Lett., 263 (2020) 127288.https://doi.org/10.1016/j.matlet.2019.127288

  15. X. Li, Q. Liu, S. Chen, W. Li, Z. Liang, Z. Fang, W. Yang, Y. Tian, Y. Yang, Quasi-aligned SiC@C nanowire arrays as free-standing electrodes for high-performance micro-supercapacitors, Energy Storage Mater., 27 (2020) 261–269.https://doi.org/10.1016/j.ensm.2020.02.009

  16. Z.G. Sun, X.J. Qiao, Q.G. Ren, X.D. Guo, L. Wei, P.Z. Liu, W.C. Li, Synthesis of SiC/SiO2 nanochains by carbonthermal reduction process and its optimization, Adv. Powder Technol., 27 (2016) 1552–1559.https://doi.org/10.1016/j.apt.2016.05.017

  17. H. Zhu, X. Li, Z. Dong, Y. Cong, G. Yuan, Z. Cui, In situ growth of dense SiC nanowires on structural defined carbon fibers without sacrificing flexibility, Ceram. Int., 46 (2020) 26017–26026.https://doi.org/10.1016/j.ceramint.2020.07.094

  18. X. Xie, Z.a. Su, D. Huang, C. Yang, Y. Wang, K. He, Q. Huang, Effect of carbon nanotexture on the synthesis, initial growth mechanism and photoluminescence properties of SiC nanowires, Nanotechnology, 32 (2021) 085601.https://doi.org/10.1088/1361-6528/abc8b4

  19. J. Chen, X. Liao, M. Wang, Z. Liu, J. Zhang, L. Ding, L. Gao, Y. Li, Highly flexible, nonflammable and free-standing SiC nanowire paper, Nanoscale, 7 (2015) 6374–6379.https://doi.org/10.1039/c5nr00776c

  20. R. Ren, D. Xiang, Y. Cao, Y. Hu, In-situ growth and relevant mechanisms of thick SiC nanowhiskers from hybrid silicon sources, J. Alloys Compd., 857 (2021) 157577.https://doi.org/10.1016/j.jallcom.2020.157577

  21. M. Raju, S. Sen, D. Sarkar, C. Jacob, Synthesis of 3C-silicon carbide 1D structures by carbothermal reduction process, J. Alloys Compd., 857 (2021) 158243.https://doi.org/10.1016/j.jallcom.2020.158243

  22. X. Chong, G. Xiao, D. Ding, J. Luo, X. Zheng, Combustion synthesis of SiC/Al2O3 composite powders with SiC nanowires and their growth mechanism, Ceram. Int., 48 (2022) 1778–1788.https://doi.org/10.1016/j.ceramint.2021.09.258

  23. M. Tang, Y. Liu, L. Liu, T. Lin, X. Liu, Microstructure and mechanical properties of SiC/SiC joints reinforced by in-situ growth SiC nanowires, Mater. Charact., 179 (2021) 111315.https://doi.org/10.1016/j.matchar.2021.111315

  24. J. Qian, A. Shui, C. He, X. Wang, M. Cai, Y. Pu, P. Hu, B. Du, Multifunction properties of SiOC reinforced with carbon fiber and in-situ SiC nanowires, Ceram. Int., 47 (2021) 8004–8013.https://doi.org/10.1016/j.ceramint.2020.11.153

  25. K.C. Kao, M. Jiang, L.J. Ding, W.X. Lin, J.J. Chen, Catalytic synthesis of SiC nanowires in an open system, J. Am. Ceram. Soc., 102 (2019) 3070–3075.https://doi.org/10.1111/jace.16299

  26. Z. Wu, H. Zheng, G. Zhang, Y. Deng, Z. Meng, H. Ul Wahab, Synthesis of diameter-fluctuating silicon carbide nanowires for excellent microwave absorption, Mater. Chem. Phys., 244 (2020) 122648.https://doi.org/10.1016/j.matchemphys.2020.122648

  27. J.X. Dai, J.J. Sha, Z.F. Zhang, Y.C. Wang, W. Krenkel, Synthesis of high crystalline beta SiC nanowires on a large scale without catalyst, Ceram. Int., 41 (2015) 9637–9641.https://doi.org/10.1016/j.ceramint.2015.04.028

  28. L. Hu, Y. Zou, C.-H. Li, J.-A. Liu, Y.-S. Shi, Preparation of SiC nanowires on graphite paper with silicon powder, Mater. Lett., 269 (2020) 127444.https://doi.org/10.1016/j.matlet.2020.127444

  29. A. Huang, Y. Ma, J. Peng, L. Li, S.-l. Chou, S. Ramakrishna, S. Peng, Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience, 1 (2021) 141–162.https://doi.org/10.1016/j.esci.2021.11.006

  30. C. Liu, X. Yuan, W. Wang, H. Liu, C. Li, H. Wu, X. Hou, In-situ fabrication of ZrB2-ZrC-SiCnws hybrid nanopowders with tuneable morphology SiCnws, Ceram. Int., 48 (2022) 4055–4065.https://doi.org/10.1016/j.ceramint.2021.10.195

  31. H. Lin, H. Li, Q. Shen, X. Shi, X. Tian, L. Guo, Catalyst-free growth of high purity 3C-SiC nanowires film on a graphite paper by sol-gel and ICVI carbothermal reduction, Mater. Lett., 212 (2018) 86–89.https://doi.org/10.1016/j.matlet.2017.10.073

  32. K. Kong, G. Xu, Y. Lan, C. Jin, Z. Yue, X. Li, F. Sun, H. Huang, J. Yuan, L. Zhou, Effect of SiOx-coating crystallinity on electrochemical performance of Si@SiOx anode materials in lithium-ion batteries, Appl. Surf. Sci., 515 (2020) 146026.https://doi.org/10.1016/j.apsusc.2020.146026

  33. G.X. Zhong, C.Q. Yin, X.Q. Wei, L. Zhou, Study on oxidation properties of silicon fine powder, Electronic Components and Materials, 27 (2008) 41–44.https://doi.org/10.14106/j.cnki.1001-2028.2008.10.011

  34. J.J. Chen, M. Jiang, W.X. Lin, L.J. Ding, L.P. Xin, Scalable fabrication of novel SiC nanowire nonwoven fabric, J. Mater. Sci., 53 (2018) 3289–3295.https://doi.org/10.1007/s10853-017-1815-x

  35. J. Chen, L. Ding, L. Xin, F. Zeng, J. Chen, Thermochemistry and growth mechanism of SiC nanowires, J. Solid State Chem., 253 (2017) 282–286.https://doi.org/10.1016/j.jssc.2017.06.009

  36. J. Chen, Q. Kong, Z. Liu, Z. Bi, H. Jia, G. Song, L. Xie, S. Zhang, C.-M. Chen, High Yield Silicon Carbide Whiskers from Rice Husk Ash and Graphene: Growth Method and Thermodynamics, ACS Sustainable Chem. Eng., 7 (2019) 19027–19033.https://doi.org/10.1021/acssuschemeng.9b04728

  37. X.K. Li, L. Liu, Y.X. Zhang, S.D. Shen, S. Ge, L.C. Ling, Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels, Carbon, 39 (2001) 159–165.https://doi.org/10.1016/S0008-6223(00)00020-8

  38. H. Zhu, X. Li, F. Han, Z. Dong, G. Yuan, G. Ma, A. Westwood, K. He, The effect of pitch-based carbon fiber microstructure and composition on the formation and growth of SiC whiskers via reaction of such fibers with silicon sources, Carbon, 99 (2016) 174–185.https://doi.org/10.1016/j.carbon.2015.12.002

  39. K. Kong, G. Xu, Y. Lan, C. Jin, Z. Yue, X. Li, F. Sun, H. Huang, J. Yuan, L. Zhou, Effect of SiOx-coating crystallinity on electrochemical performance of Si@SiOx anode materials in lithium-ion batteries, Appl Surf Sci, 515 (2020).https://doi.org/10.1016/j.apsusc.2020.146026

  40. Z.J. Li, K.H. Li, G.Y. Song, G.H. Qiu, L.N. Yang, A.L. Meng, Al- Doped SiC nanowires wrapped by the nanowire network: excellent field emission property and robust stability at high current density, J. Mater. Chem. C, 6 (2018) 6565–6574.https://doi.org/10.1039/c8tc01474d

  41. X. Chen, Y. Qin, Q. Jia, Q. Zhang, Y. Zhou, X. Liu, Synthesis of blue-green photoluminescent beta-SiC nanowires via a simple catalyst-free CVD technique, Mater. Lett., 234 (2019) 187–190.https://doi.org/10.1016/j.matlet.2018.09.101

  42. M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele, A Raman spectroscopy study of individual SiC nanowires, Adv. Funct. Mater., 17 (2007) 939–943.https://doi.org/10.1002/adfm.200600816

  43. A. Meng, Z. Li, J. Zhang, L. Gao, H. Li, Synthesis and Raman scattering of β-SiC/SiO2 core–shell nanowires, J. Cryst. Growth, 308 (2007) 263–268.https://doi.org/10.1016/j.jcrysgro.2007.08.022

  44. S. Liu, Y.Q. Yang, X. Luo, B. Huang, N. Jin, Z.D. Kou, Microstructure and mechanical property of high growth rate SiC via continuous hot-wire CVD, J. Am. Ceram. Soc., 102 (2019) 5656–5667.https://doi.org/10.1111/jace.16434

  45. J. Wei, K. Li, J. Chen, H. Yuan, G. He, C. Yang, Synthesis and Growth Mechanism of SiC/SiO2 Nanochains Heterostructure by Catalyst-Free Chemical Vapor Deposition, J. Am. Ceram. Soc., 96 (2013) 627–633.https://doi.org/10.1111/jace.12005

  46. R. Wu, B. Zha, L. Wang, K. Zhou, Y. Pan, Core-shell SiC/SiO2 heterostructures in nanowires, Physica Status Solidi a-Applications and Materials Science, 209 (2012) 553–558.https://doi.org/10.1002/pssa.201127459

  47. Z.S. Pan, C.C. Weng, M.X. Gao, W.X. Lin, L.H. Gao, H.L. Zhu, J.J. Chen, Syntheses and photoluminescence properties of SiC nanowires with different colors, J. Alloys Compd., 842 (2020) 9.https://doi.org/10.1016/j.jallcom.2020.155768

  48. J. Liang, W. Guo, J. Liu, H. Qin, P. Gao, H. Xiao, Synthesis of in-situ SiC nanowires by self-assembly nanoparticles on carbon fibers and their photoluminescence properties, J. Alloys Compd., 797 (2019) 101–109.https://doi.org/10.1016/j.jallcom.2019.05.083

  49. J. Chen, J. Zhang, M. Wang, L. Gao, Y. Li, SiC nanowire film grown on the surface of graphite paper and its electrochemical performance, J. Alloys Compd., 605 (2014) 168–172.https://doi.org/10.1016/j.jallcom.2014.03.155

  50. G. Liu, G. Su, W. Wang, F. Wang, H. Wei, L. Dang, A novel method for preparation of SiC/SiO2 nanocables and photoluminescence performance study, Applied Physics a-Materials Science & Processing, 128 (2022).https://doi.org/10.1007/s00339-021-05209-x

  51. Y. Huang, J. Liu, X. Liu, J. Sun, X. Liu, Synthesis of photoluminescent SiC-SiOx nanowires using coal tar pitch as carbon source, Ceram. Int., 46 (2020) 27232–27237.https://doi.org/10.1016/j.ceramint.2020.07.207

  52. X. Liu, Y. Huang, J. Sun, J. Gao, Q. Jia, X. Liu, Formation and growth of in-situ SiC nanowires in Al2O3-C materials under various atmospheres, Ceram. Int., 46 (2020) 27750–27757.https://doi.org/10.1016/j.ceramint.2020.07.274

  53. M. Zhang, J. Zhao, Z. Li, H. Yu, Y. Wang, A. Meng, Q. Li, Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: Homogeneous synthesis, synergistic growth mechanism, and their luminescence properties, J. Solid State Chem., 243 (2016) 247–252.https://doi.org/10.1016/j.jssc.2016.08.032

  54. Shanliang, Chen, Weijun, Li, Xiaoxiao, Li, Weiyou, Yang, One-dimensional SiC nanostructures: Designed growth, properties, and applications, Prog. Mater Sci., 104 (2019) 138–214.https://doi.org/10.1016/j.pmatsci.2019.04.004

  55. H. Wang, W. Jiang, L. Kang, Z. Li, Photoluminescence and electron field-emission properties of SiC–SiO2 core–shell fibers and 3C–SiC nanowires on silicon nanoporous pillar array, J. Alloys Compd., 553 (2013) 125–128.https://doi.org/10.1016/j.jallcom.2012.11.148

  56. Z. Shen, J. Chen, B. Li, G. Li, H. Zheng, J. Men, X. Hou, Tunable fabrication and photoluminescence property of SiC nanowires with different microstructures, Appl. Surf. Sci., 506 (2020) 144979.https://doi.org/10.1016/j.apsusc.2019.144979

  57. J. Chen, R. Wu, G. Yang, Y. Pan, J. Lin, L. Wu, R. Zhai, Synthesis and photoluminescence of needle-shaped 3C–SiC nanowires on the substrate of PAN carbon fiber, J. Alloys Compd., 456 (2008) 320–323.https://doi.org/10.1016/j.jallcom.2007.02.042

  58. C. Guo, L. Cheng, F. Ye, Q. Zhang, Adjusting the Morphology and Properties of SiC Nanowires by Catalyst Control, Materials, 13 (2020) 5179.https://doi.org/10.3390/ma13225179

  59. K. Chen, M. Fang, Z. Huang, J. Huang, Y.-g. Liu, Catalytic synthesis and growth mechanism of SiC@SiO2 nanowires and their photoluminescence properties, Crystengcomm, 15 (2013) 9032–9038.https://doi.org/10.1039/c3ce41581c

  60. F. Fabbri, A. Cavallini, G. Attolini, F. Rossi, G. Salviati, B. Dierre, N. Fukata, T. Sekiguchi, Cathodoluminescence characterization of β-SiC nanowires and surface-related silicon dioxide. Mater. Sci. Semicond. Process. 11, 179–181 (2008). https://doi.org/10.1016/j.mssp.2008.10.004

    Article  Google Scholar 

  61. S.P. Wang, S. Xie, G.W. Huang, H.X. Guo, Y.J. Cho, J. Chen, D. Fujita, M.S. Xu, Grassy Silica Nanoribbons and Strong Blue Luminescence, Sci. Rep., 6 (2016).https://doi.org/10.1038/srep34231

  62. I.V. Kityk, M. Makowska-Janusik, A. Kassiba, K.J. Plucinski, SiC nanocrystals embedded in oligoetheracrylate photopolymer matrices; new promising nonlinear optical materials, Opt. Mater., 13 (2000) 449–453.https://doi.org/10.1016/S0925-3467(99)00099-3

  63. X.L. Wu, J.Y. Fan, T. Qiu, X. Yang, G.G. Siu, P.K. Chu, Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites, Phys. Rev. Lett., 94 (2005) 026102.https://doi.org/10.1103/PhysRevLett.94.026102

  64. F. Fabbri, F. Rossi, G. Attolini, G. Salviati, B. Dierre, T. Sekiguchi, N. Fukata, Luminescence properties of SiC/SiO2 core–shell nanowires with different radial structure, Mater. Lett., 71 (2012) 137–140.https://doi.org/10.1016/j.matlet.2011.12.059

  65. Z. Li, J. Zhao, M. Zhang, J. Xia, A. Meng, SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties, Nano Res., 7 (2014) 462–472.https://doi.org/10.1007/s12274-014-0413-3

  66. G. Wei, W. Qin, K. Zheng, D. Zhang, J. Sun, J. Lin, R. Kim, G. Wang, P. Zhu, L. Wang, Synthesis and Properties of SiC/SiO2 Nanochain Heterojunctions by Microwave Method. Cryst. Growth Des. 9, 1431–1435 (2009). https://doi.org/10.1021/cg800845h

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengchao Kang or Longtao Jiang.

Ethics declarations

Conflict of interest

The authors declare having no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Kang, P., Xue, W. et al. Synthesis of large-scale SiC@SiO2 nanowires with good optical properties by using Si@SiO2 as silicon source. Appl. Phys. A 128, 1020 (2022). https://doi.org/10.1007/s00339-022-06165-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06165-w

Keywords

Navigation