Skip to main content
Log in

Mechanical and thermoelectric properties of the RbSnX3 (X = F, Cl) compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dimensionless figures of merit (bp-ZTs) with the bipolar effect of RbSnX3 (X = F, Cl) are evaluated. The carrier-type dependent Seebeck (Sn/Sp) coefficient, electric conductivity (σnp), and electronic thermal conductivity (κenep) of RbSnX3 at 300–900 K are obtained via solving the Boltzmann transport equation on the basis of the first principles band alignments and intrinsic carrier concentrations. Then, the corresponding values with bipolar effect (Sbp, σbp, and κbp) are evaluated. The bp-ZTs are determined with the obtained Sbp, σbp, and κbp and the calculated lattice thermal conductivity of RbSnX3. The results demonstrate that the maximum bp-ZTs can reach 3.17 for RbSnF3 and 1.66 for RbSnCl3 at 900 K, indicating that the two compounds are promising thermoelectric materials. To understand the mechanism of the thermoelectric performance, we also examine the relationship between the thermoelectric properties (ZT/Sn/Sp/σnpenep) and carrier concentration. Comparing the bp-ZTs with the dimensionless figures of merit obtained from the direct summation of the ones for the n-type and p-type carriers without bipolar effect, we find the bipolar effects are trivial in all the considered temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285, 703–706 (1999). https://doi.org/10.1126/science.285.5428.703

    Article  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1142/9789814287005_0006

    Article  Google Scholar 

  3. A.D. Lalonde, Y. Pei, H. Wang, G.J. Snyder, Lead telluride alloy thermoelectrics. Mater. Today 14, 526–532 (2011). https://doi.org/10.1016/S1369-7021(11)70278-4

    Article  Google Scholar 

  4. H. Liu, J. Wang, Progress of semiconductor thermoelectric materials. J. Funct. Mater. 2, 116–118 (2000)

    Google Scholar 

  5. M. Wang, S. Lin, Anisotropic and ultralow phonon thermal transport in organic–inorganic hybrid perovskites: atomistic insights into solar cell thermal management and thermoelectric energy conversion efficiency. Adv. Funct. Mater. 26, 5297–5306 (2016). https://doi.org/10.1002/adfm.201600284

    Article  Google Scholar 

  6. T. Wu, P. Gao, Development of perovskite-type materials for thermoelectric application. Materials 11, 999 (2018). https://doi.org/10.3390/ma11060999

    Article  Google Scholar 

  7. M. Onoda, S. Tsukahara, The upper limit of thermoelectric power factors in the metal–band-insulator crossover of the perovskite-type oxygen deficient system SrTiO3−δ/2. J. Phys Condens. Matter 23, 045604 (2011). https://doi.org/10.1088/0953-8984/23/4/045604

    Article  Google Scholar 

  8. A. Ali, A.U. Rahman, G. Rahman, Thermoelectric properties of KCaF3. Phys. B Condens. Matter 565, 18–24 (2019). https://doi.org/10.1016/j.physb.2019.04.019

    Article  Google Scholar 

  9. A.A. Mubarak, First principles calculations of the electronic, optical and thermoelectric performance of RbZn1−x NixF3 (x = 0, 0.25, 0.5, 0.75 and 1) alloys. Int. J. Mod. Phys. B 33, 1950141 (2019). https://doi.org/10.1142/S0217979219501418

    Article  Google Scholar 

  10. H.L. Sun, C.L. Yang, M.S. Wang, X.G. Ma, Remarkable high thermoelectric conversion efficiency materials of BeMF3 (M = Al, Y). Adv. Theory Simul. 3, 2000171 (2020). https://doi.org/10.1002/adts.202000171

    Article  Google Scholar 

  11. H.L. Sun, C.L. Yang, M.S. Wang, X.G. Ma, High thermoelectric efficiency fluoride perovskite materials of AgMF3 (M = Zn, Cd). Mater. Today Energy 19, 100611 (2020). https://doi.org/10.1016/j.mtener.2020.100611

    Article  Google Scholar 

  12. A.V. Roekeghem, J. Carrete, C. Oses, S. Curtarolo, N. Mingo, High throughput thermal conductivity of high temperature solid phases: the case of oxide and fluoride perovskites. Phys. Rev. X 6, 041061 (2016). https://doi.org/10.1103/PhysRevX.6.041061

    Article  Google Scholar 

  13. J. Bardeen, W.S. Shockley, Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72–80 (1950). https://doi.org/10.1103/PhysRev.80.72

    Article  MATH  Google Scholar 

  14. G.S. Nolas, H.J. Goldsmid, Thermal conductivity of semiconductors. in Thermal Conductivity: Theory, Properties and Applications ed. by T.M. Tritt (Springer, New York, 2004), pp.105–121. https://doi.org/10.1007/0-387-26017-X_4

  15. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973). https://doi.org/10.1016/0022-3697(73)90092-9

    Article  Google Scholar 

  16. L.A. Coldren, S.W. Corzine, M.L. Mašanović, Appendix two: relationships between fermi energy and carrier density and leakage. in Diode Lasers and Photonic Integrated Circuits, 2nd edn (John Wiley & Sons, Inc., Hoboken, 2012), p. 529. Doi:https://doi.org/10.1002/9781118148167.app2

  17. P.K. Chakraborty, S.K. Biswas, K.P. Ghatak, On the modification of the Fermi–Dirac distribution function in degenerate semiconductors. Phys. B Condens. Matter 352, 111–117 (2004). https://doi.org/10.1016/j.physb.2004.06.062

    Article  Google Scholar 

  18. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981). https://doi.org/10.1103/PhysRevB.23.5048

    Article  Google Scholar 

  19. G. Kresse, J. Hafner, Ab initio Hellmann–Feynman molecular dynamics for liquid metals. J. Non-Cryst. Solids 156–158(Part 2), 956–960 (1993). https://doi.org/10.1016/0022-3093(93)90104-6

    Article  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  21. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060

    Article  Google Scholar 

  22. J. Heyd, G.E. Scuseria, M. Ernzerhof, Erratum:“hybrid functionals based on a screened Coulomb potential.” J. Chem. Phys. 124, 219906 (2006). https://doi.org/10.1063/1.2204597

    Article  Google Scholar 

  23. D. Nemir, J. Beck, On the significance of the thermoelectric figure of merit Z. J. Electron. Mater. 39, 1897–1901 (2010). https://doi.org/10.1007/s11664-009-1060-4

    Article  Google Scholar 

  24. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M.B. Nardelli, N. Mingo, O. Levy, Aflowlib.org: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012). https://doi.org/10.1016/j.commatsci.2012.02.002

    Article  Google Scholar 

  25. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005)

    Article  Google Scholar 

  26. Y. Li, X. Gong, P. Zhang, X. Shao, Structural, electronic and optical properties of RbSnCl3: A first-principles calculation. Chem. Phys. Lett. 716, 76–82 (2019). https://doi.org/10.1016/j.cplett.2018.12.011

    Article  Google Scholar 

  27. L. Huang, W. Lambrecth, Lattice dynamics in perovskite halides CsSnX3 with X=I, Br. Cl. Phys. Rev. B 90, 195201 (2014). https://doi.org/10.1103/PhysRevB.90.195201

    Article  Google Scholar 

  28. D.T. Morelli, T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, C. Uher, Low-temperature transport properties of p-type CoSb3. Phys. Rev. B 51, 9622 (1995). https://doi.org/10.1103/PhysRevB.51.9622

    Article  Google Scholar 

  29. H.Y. Liu, C.L. Yang, M.S. Wang, X.G. Ma, Two-dimensional BiP3 with high carrier mobility and moderate band gap for hydrogen generation from water splitting. Appl. Surf. Sci. 501, 144263 (2020). https://doi.org/10.1016/j.apsusc.2019.144263

    Article  Google Scholar 

  30. H.Y. Liu, C.L. Yang, M.S. Wang, X.G. Ma, Two-dimensional hexaphosphate BiMP6 (M=Al, Ga, In) with desirable band gaps and ultrahigh carrier mobility for photocatalytic hydrogen evolution. Appl. Surf. Sci. 517, 146166 (2020). https://doi.org/10.1016/j.apsusc.2020.146166

    Article  Google Scholar 

  31. M. Liu, C.L. Yang, M.S. Wang, X.G. Ma, Two-dimensional MgP3 monolayer with remarkably tunable bandgap and enhanced visible-light and UV optical absorptions. Phys. E 135, 114960 (2022). https://doi.org/10.1016/j.physe.2021.114960

    Article  Google Scholar 

  32. D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992). https://doi.org/10.1179/mst.1992.8.4.345

    Article  Google Scholar 

  33. M.A. Rashid, M. Saiduzzaman, A. Biswas, K.M. Hossain, First-principles calculations to explore the metallic behavior of semiconducting lead-free halide perovskites RbSnX3 (X = Cl, Br) under pressure. Eur. Phys. J. Plus 137, 649 (2022). https://doi.org/10.1140/epjp/s13360-022-02843-z

    Article  Google Scholar 

  34. M.S. Alam, M. Saiduzzaman, A. Biswas, T. Ahmed, A. Sultana, K.M. Hossain, Tuning band gap and enhancing optical functions of AGeF3 (A=K, Rb) under pressure for improved optoelectronic applications. Sci. Rep. 12, 8663 (2022). https://doi.org/10.1038/s41598-022-12713-4

    Article  Google Scholar 

  35. S.K. Mitro, M. Saiduzzaman, T.I. Asif, K.M. Hossain, Band gap engineering to stimulate the optoelectronic performance of lead-free halide perovskites RbGeX3 (X = Cl, Br) under pressure. J. Mater. Sci. 33, 13860–13875 (2022). https://doi.org/10.1007/s10854-022-08318-2

    Article  Google Scholar 

  36. S.K. Mitro, M. Saiduzzaman, A. Biswas, A. Sultana, K.M. Hossain, Electronic phase transition and enhanced optoelectronic performance of lead-free halide perovskites AGeI3 (A = Rb, K) under pressure. Mater. Today Commun. 31, 103532 (2022). https://doi.org/10.1016/j.mtcomm.2022.103532

    Article  Google Scholar 

  37. I.K. Shuvo, M. Saiduzzaman, T.I. Asif, M.A. Haq, K.M. Hossain, Band gap shifting of halide perovskite CsCaBr3 from ultra-violet to visible region under pressure for photovoltaic applications. Mater. Sci. Eng. B 278, 115645 (2022). https://doi.org/10.1016/j.mseb.2022.115645

    Article  Google Scholar 

  38. M.R. Molla, M. Saiduzzaman, T.I. Asif, W.A. Dujana, K.M. Hossain, Electronic phase transition from semiconducting to metallic in cubic halide CsYbCl3 perovskite under hydrostatic pressure. Phys. B Condens. Matter 630, 413650 (2022). https://doi.org/10.1016/j.physb.2021.413650

    Article  Google Scholar 

  39. M.A. Haq, M. Saiduzzaman, T.I. Asif, I.K. Shuvo, K.M. Hossain, Ultra-violet to visible band gap engineering of cubic halide KCaCl3 perovskite under pressure for optoelectronic applications: insights from DFT. RSC Adv. 11, 36367–36378 (2021). https://doi.org/10.1039/d1ra06430d

    Article  Google Scholar 

  40. G. Madsen, J. Carrete, M.J. Verstraete, Boltztrap2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2017). https://doi.org/10.1016/j.cpc.2018.05.010

    Article  Google Scholar 

  41. V. Fiorentini, R. Farris, E. Argiolas, M.B. Maccioni, High thermoelectric figure of merit and thermopower in layered perovskite oxides. Phys. Rev. Mater. 3, 022401 (2019). https://doi.org/10.1103/PhysRevMaterials.3.022401

    Article  Google Scholar 

  42. Y. Qin, L. Yang, J. Wei, S. Yang, F. Yang, Doping effect on Cu2Se thermoelectric performance: a review. Materials 13, 5704 (2020). https://doi.org/10.3390/ma13245704

    Article  Google Scholar 

  43. J. Park, Y. Xia, V. Ozoliņš, High thermoelectric power factor and efficiency from a highly dispersive band in Ba2BiAu. Phys. Rev. Appl. 11, 014058 (2019). https://doi.org/10.1103/PhysRevApplied.11.014058

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. NSFC-11874192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Lu Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 895 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, CL., Wang, MS. et al. Mechanical and thermoelectric properties of the RbSnX3 (X = F, Cl) compounds. Appl. Phys. A 128, 1003 (2022). https://doi.org/10.1007/s00339-022-06151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06151-2

Keywords

Navigation