Skip to main content
Log in

Structure-terahertz property relationship in tellurite glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 08 November 2022

This article has been updated

Abstract

Structure-terahertz (THz) property relationship for sodium tungsten tellurite (NWT) and lanthanum tungsten tellurite (LWT) glass systems is reported and is the first of its kind for non-silicate oxide glasses. Raman spectroscopy was used to determine structural units, connectivity, and glass network. Terahertz time-domain spectroscopy (THz-TDS) was used to record the THz refractive index, n(THz), at 0.502 THz. NWT and LWT glasses record higher measurable n(THz) correlated to a glass network with substantial TeO2 and WO3 content with mixed Te–O–W linkages and TeO2- or WO3-rich content with homonuclear Te–O–Te or W–O–W linkages, respectively. Concurrent examination revealed three distinct regions of n(THz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Change history

References

  1. R. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data (CRC Press, Boca Raton, 2002)

    MATH  Google Scholar 

  2. R. El-Mallawany, The optical properties of tellurite glasses. J. Appl. Phys. 72, 1774–1777 (1992)

    Article  ADS  Google Scholar 

  3. R. El-Mallawany, M.D. Abdalla, I.A. Ahmed, New tellurite glass: optical properties. Mater. Chem. Phys. 109, 291–296 (2008)

    Article  Google Scholar 

  4. S. Manning, H. Ebendorff-Heidepriem, T.M. Monro, Ternary tellurite glasses for the fabrication of nonlinear optical fibres. Opt. Mater. Express 2, 140–152 (2012)

    Article  ADS  Google Scholar 

  5. A. Jha, B. Richards, G. Jose, T. Toney Fernandez, C. Hill, J. Lousteau, P. Joshi, Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications. Int. Mater. Rev. 57, 357–382 (2012)

    Article  Google Scholar 

  6. J. Cimek, N. Liaros, S. Couris, R. Stępień, M. Klimczak, R. Buczyński, Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers. Opt. Mater. Express 7, 3471–3483 (2017)

    Article  ADS  Google Scholar 

  7. G.S. Murugan, T. Suzuki, Y. Ohishi, Raman characteristics and nonlinear optical properties of tellurite and phosphotellurite glasses containing heavy metal oxides with ultrabroad Raman bands. J. Appl. Phys. 100, 023107 (2006)

    Article  ADS  Google Scholar 

  8. J. Wang, E. Vogel, E. Snitzer, Tellurite glass: a new candidate for fiber devices. Opt. Mater. 3, 187–203 (1994)

    Article  ADS  Google Scholar 

  9. T. Sekiya, N. Mochida, A. Ohtsuka, M. Tonokawa, Normal vibrations of two polymorphic forms of TeO2 crystals and assignments of Raman peaks of pure TeO2 glass. J. Ceram. Soc. Jpn. 97, 1435–1440 (1989)

    Article  Google Scholar 

  10. T. Sekiya, N. Mochida, A. Ohtsuka, Raman spectra of MO-TeO2 (M = Mg, Sr, Ba and Zn) glasses. J. Non-Cryst. Solids 168, 106–114 (1994)

    Article  ADS  Google Scholar 

  11. T. Sekiya, N. Mochida, A. Ohtsuka, M. Tonokawa, Raman spectra of MO1/2-TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses. J. Non-Cryst. Solids 144, 128–144 (1992)

    Article  ADS  Google Scholar 

  12. T. Sekiya, N. Mochida, S. Ogawa, Structural study of WO3-TeO2 glasses. J. Non-Cryst. Solids 176, 105–115 (1994)

    Article  ADS  Google Scholar 

  13. T. Sekiya, N. Mochida, A. Ohtsuka, A. Soejima, Raman spectra of BO3/2-TeO2 glasses. J. Non-Cryst. Solids 151, 222–228 (1992)

    Article  ADS  Google Scholar 

  14. A. Kalampounias, G. Tsilomelekis, S. Boghosian, Glass-forming ability of TeO2 and temperature induced changes on the structure of the glassy, supercooled, and molten states. J. Chem. Phys. 142, 154503 (2015)

    Article  ADS  Google Scholar 

  15. N. Tagiara, D. Palles, E. Simandiras, V. Psycharis, A. Kyritsis, E. Kamitsos, Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses. J. Non-Cryst. Solids 457, 116–125 (2017)

    Article  ADS  Google Scholar 

  16. T. Uchino, T. Yoko, Ab initio cluster model calculations on the vibrational frequencies of TeO2 glass. J. Non-Cryst. Solids 204, 243–252 (1996)

    Article  ADS  Google Scholar 

  17. F. Pietrucci, S. Caravati, M. Bernasconi, TeO2 glass properties from first principles. Phys. Rev. B Condens. Matter 78, 064203 (2008)

    Article  ADS  Google Scholar 

  18. G.W. Brady, Structure of tellurium oxide glass. J. Chem. Phys. 27, 300–303 (1957)

    Article  ADS  Google Scholar 

  19. S. Neov, V. Kozhukharov, I. Gerasimova, K. Krezhov, B. Sidzhimov, A model for structural recombination in tellurite glasses. J. Phys. Condens. Matter 12, 2475 (1979)

    Google Scholar 

  20. O.L.G. Alderman, C.J. Benmore, S. Feller, E. Kamitsos, E. Simandiras, D.G. Liakos, M. Jesuit, M. Boyd, M. Packard, R. Weber, Short-range disorder in TeO2 melt and glass. J. Phys. Chem. Lett. 11, 427–431 (2019)

    Article  Google Scholar 

  21. J. Duffy, M. Ingram, S. Fong, Effect of basicity on chemical bonding of metal ions in glass and its relevance to their stability. Phys. Chem. Chem. Phys. 2, 1829–1833 (2000)

    Article  Google Scholar 

  22. J.A. Duffy, Bonding, Energy Levels, and Bands in Inorganic Solids (Longman Scientific and Technical, Essex, 1990)

    Google Scholar 

  23. C.P. Rodriguez, J.S. McCloy, M. Schweiger, J.V. Crum, A.E. Winschell, Optical Basicity and Nepheline Crystallization in High Alumina Glasses (Pacific Northwest National Lab. (PNNL), Richland, 2011)

    Book  Google Scholar 

  24. J. Duffy, Optical basicity of fluorides and mixed oxide–fluoride glasses and melts. Phys. Chem. Glas. Eur. J. Glass Sci. Technol. B 52, 107–114 (2011)

    Google Scholar 

  25. M. Hoffmann. Novel Techniques in THz-Time-Domain-Spectroscopy—A Comprehensive Study of Technical Improvements to THz-TDS. (Fakultat fur Mathematik und Physik der Albert-Ludwigs-Universitat Freiburg im Breisgau, 2006).

  26. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Terahertz spectroscopy. J. Phys. Chem. B. 106(29), 7146–7159 (2002).

  27. M. Naftaly, A. Foulds, R. Miles, A. Davies, Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties. J. Infrared Millim. Terahertz Waves 26, 55–64 (2005)

    Article  ADS  Google Scholar 

  28. M. Naftaly, R. Miles, Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared. J. Non-Cryst. Solids 351, 3341–3346 (2005)

    Article  ADS  Google Scholar 

  29. M. Naftaly, R. Miles, Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties. J. Appl. Phys. 102, 1–6 (2007)

    Article  Google Scholar 

  30. M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy for material characterization. Proc. IEEE 95, 1658–1665 (2007)

    Article  Google Scholar 

  31. T. Löffler, T. Bauer, K. Siebert, H.G. Roskos, A. Fitzgerald, S. Czasch, Terahertz dark-field imaging of biomedical tissue. Opt. Express 9, 616–621 (2001)

    Article  ADS  Google Scholar 

  32. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20, S266 (2005)

    Article  ADS  Google Scholar 

  33. S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 50, 043001 (2017)

    Article  ADS  Google Scholar 

  34. G. Upender, S. Ramesh, M. Prasad, V. Sathe, V.C. Mouli, Optical band gap, glass transition temperature and structural studies of (100−2x)TeO2−xAg2O−xWO3 glass system. J. Alloys Compd. 504, 468–474 (2010)

    Article  Google Scholar 

  35. B. Chowdari, P.P. Kumari, Structure and ionic conduction in the Ag2O·WO3·TeO2 glass system. J. Mater. Sci. 33, 3591–3599 (1998)

    Article  ADS  Google Scholar 

  36. C. Wang, Z. Shen, B. Chowdari, Raman studies of Ag2O·WO3·TeO2 ternary glasses. J. Raman Spectrosc. 29, 819–823 (1998)

    Article  ADS  Google Scholar 

  37. J. Ozdanova, H. Ticha, L. Tichy, Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100xy and (PbO)x(WO3)y(TeO2)100xy glasses. J. Non-Cryst. Solids 355, 2318–2322 (2009)

    Article  ADS  Google Scholar 

  38. V. Sokolov, V. Plotnichenko, V. Koltashev, E. Dianov, On the structure of tungstate–tellurite glasses. J. Non-Cryst. Solids 352, 5618–5632 (2006)

    Article  ADS  Google Scholar 

  39. B. Chowdari, P.P. Kumari, Raman spectroscopic study of ternary silver tellurite glasses. Mater. Res. Bull. 34, 327–342 (1999)

    Article  Google Scholar 

  40. Y. Himei, A. Osaka, T. Nanba, Y. Miura, Coordination change of Te atoms in binary tellurite glasses. J. Non-Cryst. Solids 177, 164–169 (1994)

    Article  ADS  Google Scholar 

  41. S. Sundaram, Terahertz time-domain spectroscopy of glasses, in Springer Handbook of Glass. ed. by J.H.J. David Musgraves, L. Calvez (Springer, New York, 2019), pp.909–929

    Chapter  Google Scholar 

Download references

Acknowledgements

Nicholas Tostanoski acknowledges teaching assistant support from the Inamori School of Engineering. S. K. Sundaram acknowledges support from Kyocera Corporation in the form of Inamori Professorship. The Raman instrumentation is based upon work supported by the National Science Foundation under Grant no. DMR-1626164.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NJT. The first draft of the manuscript was written by NJT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicholas J. Tostanoski.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to incorrect unit “/cm−1”. It should be “cm−1”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tostanoski, N.J., Sundaram, S.K. Structure-terahertz property relationship in tellurite glasses. Appl. Phys. A 128, 1001 (2022). https://doi.org/10.1007/s00339-022-06148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06148-x

Keywords

Navigation