Skip to main content
Log in

Analysis of the electric field dependence on the electrocaloric properties on BaHf0.11Ti0.89O3 ferroelectric ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on the experimental data of the isothermal polarization P(T,E) of BaHf0.11Ti0.89O3 bulk ceramic, entropy change (∆S), temperature change (∆T), and heat carrying capacity (∆Q) of the material are evaluated in detail using an artificial neural network (ANN) procedure. As a result, the maximum ECE occurs above TC and shifts to higher temperatures with increasing applied field. The BaHf0.11Ti0.89O3 ceramic exhibits large ECE parameters around the Curie temperature (TC) associated with a relatively broad electrocaloric temperature span. Furthermore, under different electric fields, many figures of merit such as relative cooling power, temperature-averaged entropy change, and normalized refrigerant capacity are explored, making the sample a promising material for green cooling devices. Such figures of merit increase monotonically with the enhancement of the applied field. In addition, the field dependence of the ∆S and ∆T is thoroughly investigated. The master curve and the exponent n controlling the field dependence of both magnitudes confirm the second-order character of the electric phase transition of the sample. The ANN method provides very accurate and fast predictions with a small amount of experimental data. Therefore, this method accelerates the characterization of novel electrocaloric materials by shortening the time necessary for experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data materials

The data that support the findings of this study are available from the corresponding author on request.

References

  1. J. Shi, D. Han, Z. Li, L. Yang, S.-G. Lu, Z. Zhong, J. Chen, Q.M. Zhang, X. Qian, Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3, 1200 (2019)

    Google Scholar 

  2. S. Samanta, G. Anoop, W.J. Seol, S.M. Park, H.J. Joh, J.O. Choi, D. Ahn, S. Unithrattil, H. Kim, J. Yeom, S. Hong, J.Y. Jo, Large electrocaloric effect with high thermal and electric field cycling stability in solution-processed Y:HfO2 thin films. J. Mater. Chem. A 10, 9960 (2022)

    Google Scholar 

  3. R. Gao, X. Shi, J. Wang, H. Huang, Understanding electrocaloric cooling of ferroelectricsguided by phase-field modeling. J. Am. Ceram. Soc. 105, 3689 (2022)

    Google Scholar 

  4. B. Nair, T. Usui, S. Crossley, S. Kurdi, G.G. Guzmán-Verri, X. Moya, S. Hirose, N.D. Mathur, Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575(7783), 468 (2019)

    ADS  Google Scholar 

  5. J. Wu, G. Zhao, C. Pan, K. Tao, J. Yang, X. Zhu, P. Tong, L. Yin, W. Song, Y. Sun, Lattice disorder effect on the structural, ferroelectric and electrocaloric properties of (Ba,Sr,Ca)TiO3 ceramics. J. Alloys Compd. 915, 165433 (2022)

    Google Scholar 

  6. A. Torelló, P. Lheritier, T. Usui, Y. Nouchokgwe, M. Gérard, O. Bouton, S. Hirose, E. Defay, Giant temperature span in electrocaloric regenerator. Science 370, 125 (2020)

    ADS  Google Scholar 

  7. S. Khardazi, H. Zaitouni, S. Belkhadir, D. Mezzane, M. Amjoud, Y. Gagou, B. Asbani, I. Lukyanchuk, S. Terenchuk, Improvement of the electrocaloric effect and energy storage performances in Pb-free ferroelectric Ba0.9Sr0.1Ti0.9Sn0.1O3 ceramic near room temperature. J. Solid State Chem. 311, 123112 (2022)

    Google Scholar 

  8. X. Qian, D. Han, L. Zheng, J. Chen, M. Tyagi, Q. Li, F. Du, S. Zheng, X. Huang, S. Zhang, J. Shi, H. Huang, X. Shi, J. Chen, H. Qin, J. Bernholc, X. Chen, L.-Q. Chen, L. Hong, Q.M. Zhang, High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664 (2021)

    ADS  Google Scholar 

  9. L. Zhu, X. Meng, J. Zhu, Y. Zhao, Y. Li, X. Hao, Enhanced room temperature electrocaloric effect in lead-free relaxor ferroelectric NBT ceramics with excellent temperature stability. J. Alloys Compd. 892, 162241 (2022)

    Google Scholar 

  10. Y. Wang, L. Zhu, Y. Zhao, Y. Li, X. Hao, Enhanced electrocaloric effect in lead-free ferroelectric potassium–sodium niobate ceramics benefiting from phase boundary design. J. Mater. Sci. Mater. Electron. 33, 17322 (2022)

    Google Scholar 

  11. Y. Singh, S. Singh, Enhanced electrocaloric effect and energy storage response in lead-free (1–x)K0.5Na0.5NbO3−xBaTiO3 ferroelectric ceramics. Ceram. Int. 48, 27018 (2022)

    Google Scholar 

  12. X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar-Narayan, A. Planes, L. Mañosa, N.D. Mathur, Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25(9), 1360 (2013)

    Google Scholar 

  13. M. Valant, Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980 (2012)

    Google Scholar 

  14. F. Li, K. Li, M. Long, C. Wang, G. Chen, J. Zhai, Ferroelectric-relaxor crossover induce large electrocaloric effect with ultrawide temperature span in NaNbO3-based lead-free ceramics. Appl. Phys. Lett. 118, 043902 (2021)

    ADS  Google Scholar 

  15. X. Moya, S. Kar-Narayan, N.D. Mathur, Caloric materials near ferroic phase transitions. Nat. Mater. 13(5), 439 (2014)

    ADS  Google Scholar 

  16. M. Benyoussef, M. Zannen, J. Belhadi, B. Manoun, Z. Kutnjak, D. Vengust, M. Spreitzer, M. El Marssi, A. Lahmar, Structural, dielectric, and ferroelectric properties of Na0.5(Bi1−xNdx)0.5TiO3 ceramics for energy storage and electrocaloric applications. Ceram. Int. 47, 26539 (2021)

    Google Scholar 

  17. F. Wei, L. Zhang, R. Jing, Q. Hu, D.O. Alikin, Y. Ya Shur, J. Zhang, X. Lu, Y. Yan, H. Du, X. Wei, L. Jin, Structure, dielectric, electrostrictive and electrocaloric properties of environmentally friendly Bi-substituted BCZT ferroelectric ceramics. Ceram. Int. 47, 34676 (2021)

    Google Scholar 

  18. A. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Marhur, Giant electrocaloric effect in thin film PbZr0.05Ti0.05O3. Science 311(5765), 1270 (2006)

    ADS  Google Scholar 

  19. H. Wang, L. Zhang, Y. Sun, C. Cazorla, M. Guo, Y. Li, K.H. Lam, X. Lou, D. Wang, The primary and secondary electrocaloric effect at ferroelectric-ferroelectric transitions in lead-free ceramics. Scr. Mater. 178, 150 (2020)

    Google Scholar 

  20. Y. Zhao, X. Hao, Q. Zhang, A giant electrocaloric effect of a Pb0.97La0.02 (Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature. J. Mater. Chem. C 3, 1694 (2015)

    Google Scholar 

  21. W. Geng, Y. Liu, X. Meng, L. Bellaiche, J.F. Scott, B. Dkhil, Giant negative electrocaloric effect in Antiferroelectric La-Doped Pb(ZrTi)O3 Thin films near room temperature. Adv. Mater. 27(20), 3165 (2015)

    Google Scholar 

  22. B. Peng, H. Fan, Q. Zhang, A. Giant, Electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv. Funct. Mater. 23, 2987 (2013)

    Google Scholar 

  23. G. Zhang, X. Zhang, T. Yang, Q. Li, L.-Q. Chen, S. Jiang, Q. Wang, Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano 9, 7164 (2015)

    Google Scholar 

  24. J. Li, Z. Li, J. He, Y. Hou, Y. Su, L. Qiao, Y. Bai, Near-room-temperature large electrocaloric effect in barium titanate single crystal based on the electric field-temperature phase diagram. Phys. Status Solidi 15(8), 2100251 (2021)

    Google Scholar 

  25. H. Zaitouni, L. Hajji, D. Mezzane, E. Choukri, A.G. Razumnaya, Y. Gagou, K. Hoummada, A. Alimoussa, B. Rožič, D. Črešnar, M. El Marssi, Z. Kutnjak, Enhanced electrocaloric and energy-storage properties of environment-friendly ferroelectric Ba0.9Sr0.1Ti1−xSnxO3 ceramics. Mater. Today Commun. 31, 103351 (2022)

    Google Scholar 

  26. X.S. Qian, S.G. Lu, X. Li, H. Gu, L.C. Chien, Q.M. Zhang, Large Electrocaloric effect in a dielectric liquid possessing a large dielectric anisotropy near the isotropic-nematic transition. Adv. Funct. Mater. 23, 2894 (2013)

    Google Scholar 

  27. Z. Lv, J. Wei, T. Yang, Z. Sun, Z. Xu, Manipulation of Curie temperature and ferroelectric polarization for large electrocaloric strength in BaTiO3-based ceramics. Ceram. Int. 46, 14978 (2020)

    Google Scholar 

  28. H. Tang, X. Niu, P. Zhao, X. Tang, X. Jian, X. Chen, X. Peng, Z. Yang, S. Lu, Large energy-storage density and positive electrocaloric effect in x BiFeO3-(1−X)BaTiO3 relaxor ferroelectric ceramics. J. Mater. Chem. C 10, 1302 (2022)

    Google Scholar 

  29. M.D. Li, X.G. Tang, S.M. Zeng, Q.X. Liu, Y.P. Jiang, T.F. Zhang, W.H. Li, The large electrocaloric effect in lead-free Ba(HfxTi1−x)O3 ferroelectric ceramics for clean energy applications. ACS Sustain. Chem. Eng. 6, 8920 (2018)

    Google Scholar 

  30. J. Li, D. Zhang, S. Qin, T. Li, M. Wu, D. Wang, Y. Bai, X. Lou, Large room-temperature electrocaloric effect in lead-free BaHfxTi1−xO3 ceramics under low electric field. Acta Mater. 115, 58 (2016)

    ADS  Google Scholar 

  31. K.S. Srikanth, R. Vaish, Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1−xO3 ceramics. J. Eur. Ceram. Soc. 37, 3927 (2017)

    Google Scholar 

  32. Z.D. Luo, D.W. Zhang, Y. Liu, D. Zhou, Y.G. Yao, C.Q. Liu et al., Enhanced electrocaloric effect in lead-free BaTi1−xSnxO3 ceramics near room temperature. Appl. Phys. Lett. 105, 102904 (2014)

    ADS  Google Scholar 

  33. J.H. Qiu, Q. Jiang, Effect of electric field on electrocaloric effect in Pb(Zr1−xTix)O3 solid solution. Phys. Lett. A 372(48), 7191 (2008)

    ADS  MATH  Google Scholar 

  34. X. Cheng, Y. Li, D. Zhu, M. Li, M. Feng, Effects of uniaxial compressive stress on the electrocaloric effect of ferroelectric ceramics. J. Mater. Sci. 55, 8802 (2020)

    ADS  Google Scholar 

  35. Y. Liu, J.F. Scott, B. Dkhil, Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl. Phys. Rev. 3, 031102 (2016)

    ADS  Google Scholar 

  36. S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, R. Pirc, Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl. Phys. Lett. 97, 202901 (2010)

    ADS  Google Scholar 

  37. D.S. Kim, B.C. Kim, S.H. Han, H.-W. Kang, J.S. Kim, C.I. Cheon, Direct and indirect measurements of the electro-caloric effect in (Bi,Na)TiO3–SrTiO3 ceramics. J. Appl. Phys. 126, 234101 (2019)

    ADS  Google Scholar 

  38. C. Aprea, A. Greco, A. Maiorino, C. Masselli, The environmental impact of solid-state materials working in an active caloric refrigerator compared to a vapor compression cooler. Int. J. Heat Technol 36, 1155 (2018)

    Google Scholar 

  39. C. Aprea, A. Greco, A. Maiorino, An application of the artificial neural network to optimise the energy performances of a magnetic refrigerator. Int. J. Refrig 82, 238 (2017)

    Google Scholar 

  40. R. M’nassri, M.M. Nofal, E. Dannoun, H. Rahmouni, Electric field dependence of electrocaloric performances in KTa0.57Nb0.43O3 single crystal. J. Mater. Sci. Mater. Electron. 33, 10939 (2022)

    Google Scholar 

  41. D. Graupe, Principles of artificial neural networks, in Advanced series in circuits and systems, vol. 7, 3rd edn., ed. by W. Chen, D.A. Mlynski (World Scientific, Singapore, 1997)

    Google Scholar 

  42. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323, 533 (1986)

    ADS  MATH  Google Scholar 

  43. H.S. Lim, Y.T. Kang, Estimation of finish cooling temperature by artificial neural networks of backpropagation during accelerated control cooling process. Int. J. Heat. Mass. Transf. 126, 579 (2018)

    Google Scholar 

  44. K.G. Sheela, S.N. Deepa, Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/425740

    Article  Google Scholar 

  45. M. Mohanraj, S. Jayaraj, C. Muraleedharan, Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—a review Renew. Sustain. Energy Rev. 16, 1340 (2012)

    Google Scholar 

  46. A. Maiorino, M.G.D. Duca, J. Tušek, U. Tomc, A. Kitanovski, C. Aprea, Evaluating magnetocaloric effect in magnetocaloric materials: a novel approach based on indirect measurements using artificial neural networks. Energies 12(10), 1871 (2019)

    Google Scholar 

  47. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation (No ICS-8506). Calif. Univ. San Diego La Jolla Inst. Cogn. Sci. 1, 318 (1986)

    Google Scholar 

  48. Y. Zhao, X.Q. Liu, S.Y. Wu, X.M. Chen, Electrocaloric effect and pyroelectric energy harvesting in diffuse ferroelectric Ba(Ti1–xCex)O3 ceramics. J. Electroceram. 43, 106 (2019)

    Google Scholar 

  49. Y. Zhao, X.Q. Liu, J.W. Wu, S.Y. Wu, X.M. Chen, Electrocaloric effect in relaxor ferroelectric Ba(Ti1−xYx)O3–x/2 ceramics over a broad temperature range. J. Alloys Compd. 729, 57 (2017)

    Google Scholar 

  50. S. Patel, A. Chauhan, R. Vaish, Electrocaloric behavior and temperature-dependent scaling of dynamic hysteresis of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics. Int. J. Appl. Ceram. Technol. 12, 899 (2015)

    Google Scholar 

  51. G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M.R. Gadinski, M.A. Haque, Q. Zhang, Q. Wang, Ferroelectric polymer nanocomposites for room temperature electrocaloric refrigeration. Adv. Mater. 27, 1450 (2015)

    Google Scholar 

  52. R. Gaur, N. Sharma, S. Kharbanda, S. Singh, Enhanced ferroelectric and electrocaloric properties in CuO-modified lead-free (Na0.5K0.5)NbO3 ceramics for solid-state cooling application. Mater. Sci. Eng. B 261, 114767 (2020)

    Google Scholar 

  53. L. Luo, H. Chen, Y. Zhu, W. Li, H. Luo, Y. Zhang, Pyroelectric and electrocaloric effect of 111-oriented 09PMN–01PT single crystal. J Alloys Compd 509, 8149 (2001)

    Google Scholar 

  54. X.-S. Qian, H.-J. Ye, Y.-T. Zhang, H. Gu, X. Li, C.A. Randall, Q.M. Zhang, Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater. 24, 1300 (2014)

    Google Scholar 

  55. X. Jiang, L. Luo, B. Wang, W. Li, H. Chen, Electrocaloric effect based on the depolarization transition in (1–x)Bi0.5Na0.5TiO3–xKNbO3 lead-free ceramics. Ceram. Int. 40, 2627 (2014)

    Google Scholar 

  56. B. Rožič, M. Kosec, H. Uršič, J. Holc, B. Malič, Q.M. Zhang, R. Blinc, R. Pirc, Z. Kutnjak, Influence of the critical point on the electrocaloric response of relaxer ferroelectrics. J. Appl. Phys. 110, 064118 (2011)

    ADS  Google Scholar 

  57. Z. Feng, D. Shi, R. Zeng, S. Dou, Large electrocaloric effect of highly (100)-oriented 0.68PbMg1/3Nb2/3O3–0.32PbTiO3 thin films with a Pb(Zr0.3Ti0.7)O3/PbOx buffer layer. Thin Solid Films. 519, 5433 (2011)

    ADS  Google Scholar 

  58. X. Hao, Y. Zhao, Q. Zhang, Phase structure tuned electrocaloric effect and pyroelectric energy harvesting performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 antiferroelectric thick films. J. Phys. Chem. C 119, 18877 (2015)

    Google Scholar 

  59. M. Kumar, G. Sharma, S.D. Kaushik, A.K. Singh, S. Kumar, Critical Behavior of Relaxor Pb0.91La0.09Zr0.65Ti0.35O3, Interplay between polar nano Regions, electrocaloric and energy storage response. J. Alloys Compd. 884, 161067 (2021)

    Google Scholar 

  60. J.Y. Law, V. Franco, L.M. Moreno-Ramírez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, O. Gutfleisch, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat Commun. 9, 2680 (2018)

    ADS  Google Scholar 

  61. L.J. Ding, Y. Zhong, A theoretical strategy for pressure-driven ferroelectric transition associated with critical behavior and magnetoelectric coupling in organic multiferroics. Phys. Chem. Chem. Phys. 22, 19120 (2020)

    Google Scholar 

  62. G. Suchaneck, G. Gerlach, Lead-free relaxor ferroelectrics for electrocaloric cooling. Mater. Today Proc. 3, 622 (2016)

    Google Scholar 

  63. G. Suchaneck, G. Gerlach, Electrocaloric cooling based on relaxor ferroelectrics. Phase Trans. 88, 333 (2015)

    Google Scholar 

  64. H. Kacem, Ah. Dhahri, M.A. Gdaiem, Z. Sassi, L. Seveyrat, L. Lebrun, V. Perrin, J. Dhahri, Electrocaloric properties of lead-free ferroelectric ceramic near room temperature. Appl. Phys. A 127, 483 (2021)

    ADS  Google Scholar 

  65. M.D. Glinchuk, R. Farhi, A random field theory based model for ferroelectric relaxors. J. Phys. Condens. Matter 8, 6985 (1996)

    ADS  Google Scholar 

  66. M.E. Wood, W.H. Potter, Cryogenics 25, 667 (1985)

    ADS  Google Scholar 

  67. J.M. Bermúdez-García, M. Sánchez-Andújar, S. Castro-García, J. López-Beceiro, R. Artiage, M.A. Señarís-Rodríguez, Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat. Commun. 8, 15715 (2017)

    ADS  Google Scholar 

  68. A. Barman, S. Chatterjee, C. Ou, Y.Y. Tse, N. Banerjee, S. Kar-Narayan, A. Datta, D. Mukherjee, Large electrocaloric effect in lead-free ferroelectric Ba0.85Ca0.15Ti0.9Zr0.1O3 thin film heterostructure. APL Mater. 9, 021115 (2021)

    ADS  Google Scholar 

  69. L.D. Griffith, Y. Mudryk, J. Slaughter, V.K. Pecharsky, Material-based figure of merit for caloric materials. J. Appl. Phys. 123, 034902 (2018)

    ADS  Google Scholar 

  70. A.M.G. Carvalho, W. Imamura, E.O. Usuda, N.M. Bom, Giant room-temperature barocaloric effects in PDMS rubber at low pressures. Eur. Polymer J. 99, 212 (2018)

    Google Scholar 

  71. N.M. Bom, É.O. Usuda, M. Silva Gigliotti, D.J.M. Aguiar, W. Imamura, L.S. Paixão, A.M.G. Carvalho, Waste tire rubber-based refrigerants for solid-state cooling devices. Chin. J. Polym. Sci. 38, 769 (2020)

    Google Scholar 

  72. F. Le Goupil, J. Bennett, A.-K. Axelsson, M. Valant, A. Berenov, A.J. Bell, T.P. Comyn, N.M. Alford, Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT–KBT ceramics. Appl. Phys. Lett. 107, 172903 (2015)

    ADS  Google Scholar 

  73. Y. Bai, K. Ding, G.-P. Zheng, S.-Q. Shi, L. Qiao, Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Phys. Status Solidi (a) 209, 941 (2012)

    ADS  Google Scholar 

  74. S. Hirose, T. Usui, S. Crossley, B. Nair, A. Ando, X. Moya, N. Mathur, Progress on electrocaloric multilayer ceramic capacitor development. APL Mater. 4, 064105 (2016)

    ADS  Google Scholar 

  75. J. Wang, T. Yang, S. Chen, G. Li, Q. Zhang, X. Yao, Nonadiabatic direct measurement electrocaloric effect in lead-free Ba, Ca(Zr,Ti)O3 ceramics. J. Alloys Compd. 550, 561 (2013)

    Google Scholar 

  76. J. Li, Y. Bai, S. Qin, Direct and indirect characterization of electrocaloric effect in (Na,K)NbO3 based lead-free ceramics. Appl. Phys. Lett. 109, 162902 (2016)

    ADS  Google Scholar 

  77. B. Neese, B. Chu, S. Lu, Y. Wang, E. Furman, Q. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature. Science 8, 821 (2008)

    ADS  Google Scholar 

  78. Y. Bai, G. Zheng, S. Shi, Direct measurement of giant electrocaloric effect in BaTiO3 multilayer thick film structure beyond theoretical prediction. Appl. Phys. Lett. 96, 192902 (2010)

    ADS  Google Scholar 

  79. Y. Bai, F. Han, S. Xie, J. Li, S. Qin, J. Li, L. Qiao, D. Guo, Thickness dependence of electrocaloric effect in high-temperature sintered Ba0.8Sr0.2TiO3 ceramics. J. Alloys Compd. 736, 57 (2018)

    Google Scholar 

  80. J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, Z. Kutnjak, Large electrocaloric effect in lead-free K0.5Na0.5NbO3–SrTiO3 ceramics. Appl. Phys. Lett. 106, 202905 (2015)

    ADS  Google Scholar 

  81. S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, X. Li, E. Furman, L.J. Gorny, M. Lin, B. Malič, M. Kosec, R. Blinc, R. Pirc, Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl. Phys. Lett. 97, 162904 (2010)

    ADS  Google Scholar 

  82. M. Sanlialp, Z. Luo, V.V. Shvartsman, X. Wei, Y. Liu, B. Dkhil, D.C. Lupascu, Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1−x)O3 ceramics. Appl. Phys. Lett. 111, 173903 (2017)

    ADS  Google Scholar 

  83. B. Liu, J. Wang, X. Zhong, K. Huang, B. Li, F. Wang, J. Xie, Y. Zhou, Enhanced electrocaloric effect in a Ba(1–x)SrxTiO3 compositionally graded film. RSC Adv 4, 24533 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Scientific Research and the Prince Sultan University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. M’nassri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies involving animal or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M’nassri, R., Nofal, M.M., Dannoun, E.M.A. et al. Analysis of the electric field dependence on the electrocaloric properties on BaHf0.11Ti0.89O3 ferroelectric ceramics. Appl. Phys. A 128, 997 (2022). https://doi.org/10.1007/s00339-022-06144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06144-1

Keywords

Navigation