Skip to main content
Log in

Ag:Y2O3–SnO2 core-shell-based nanostructured sensor for achieving high ammonia sensing performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Owing to the requirement for high-performing and low-cost gas sensors, Ag:Y2O3–SnO2 core-shell nanocomposites were fabricated for high-efficiency gas sensing applications. Thick film sensor of Ag:Y2O3–SnO2 was prepared through a simple slurry coating method and tested towards various volatile organic compounds (VOCs). Ag:Y2O3–SnO2 sensor has exhibited superior sensing performance and good stability at room temperature when introduced to low concentrations (1 ppm) of ammonia. Ag:Y2O3–SnO2 sensor has shown a rapid response time (2 s) and recovery time (8 s) as well as increased sensitivity (̴̴ 1496) towards 100 ppm of ammonia at room temperature. HR-TEM results show the core–shell structure of Ag:Y2O3–SnO2 with sizes around 6–18 nm. The sensing performance of the Ag:Y2O3–SnO2 sensor is shown extensively high compared to the pure Y2O3, SnO2 and Y2O3–SnO2 sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Amarnath, K. Gurunathan, Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature. J. Alloy. Comp. 857, 157584 (2021). https://doi.org/10.1016/j.jallcom.2020.157584

    Article  Google Scholar 

  2. L.-L. Xing, S. Yuan, Z.-H. Chen, Y.-J. Chen, X.-Y. Xue, Enhanced gas sensing performance of SnO2 α-MoO3 heterostructure nanobelts. Nanotechnology 22, 225502 (2011). https://doi.org/10.1088/0957-4484/22/22/225502

    Article  Google Scholar 

  3. T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang, Y. Wang, Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res. 11, 791–803 (2018). https://doi.org/10.1007/s12274-017-1688-y

    Article  Google Scholar 

  4. Q. Rong, Y. Zhang, K. Li, H. Wang, J. Hu, Z. Zhu, J. Zhang, Q. Liu, Ag-LaFeO3/NCQDs p-n heterojunctions for superior methanol gas sensing performance. Mater. Res. Bull. 115, 55–64 (2019). https://doi.org/10.1016/j.materresbull.2019.02.033

    Article  Google Scholar 

  5. S.M. Majhi, P. Rai, Y.-T. Yu, Facile approach to synthesize Au@ZnO core−shell nanoparticles and their application for highly sensitive and selective gas sensors. ACS Appl. Mater. Inter. 7, 9462 (2015). https://doi.org/10.1021/acsami.5b00055

    Article  Google Scholar 

  6. H.R. Abed, A.M. Alwan, A.A. Yousif, N.F. Habubi, Efficient SnO2/CuO/porous silicon nanocomposites structure for NH3 gas sensing by incorporating CuO nanoparticles. Opt Quant Electron. 51, 333 (2019). https://doi.org/10.1007/s11082-019-2046-y

    Article  Google Scholar 

  7. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng., B 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  Google Scholar 

  8. G.-J. Sun, H. Kheel, S. Park, S. Lee, S. Eon Park, C. Lee, Synthesis of TiO2 nanorods decorated with NiO nanoparticles and their acetone sensing properties. Ceram. Int. 42, 1063–1069 (2016). https://doi.org/10.1016/j.ceramint.2015.09.031

    Article  Google Scholar 

  9. X.-T. Yin, W.-D. Zhou, J. Li, Q. Wang, F.-Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.-M. Wang, Ş Ţălu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low-level hydrogen gas detection. J. Alloy. Compd. 805, 229–236 (2019). https://doi.org/10.1016/j.jallcom.2019.07.081

    Article  Google Scholar 

  10. J. Shruthi, N. Jayababu, M.V. Ramana Reddy, Synthesis of Y2O3-ZnO nanocomposites for the enhancement of room temperature 2-methoxyethanol gas sensing performance. J. Alloy. Comp. 798, 438e445 (2019)

    Article  Google Scholar 

  11. N. Jayababu, M. Poloju, J. Shruthi, M.V.R. Reddy, Ultrasensitive resistivity-based ethanol sensor based on the use of CeO2-Fe2O3 core-shell microclusters. Microchim Acta. 186, 712 (2019). https://doi.org/10.1007/s00604-019-3809-7

    Article  Google Scholar 

  12. N. Jayababu, D. Kim, Co/Zn bimetal organic framework elliptical nanosheets on flexible conductive fabric for energy harvesting and environmental monitoring via triboelectricity. Nano Energy 89, 106355 (2021). https://doi.org/10.1016/j.nanoen.2021.106355

    Article  Google Scholar 

  13. N. Jayababu, M. Poloju, J. Shruthi, M.V.R. Reddy, Semi shield driven p-n heterostructures and their role in enhancing the room temperature ethanol gas sensing performance of NiO/SnO2 nanocomposites. Ceram. Int. 45, 15134–15142 (2019). https://doi.org/10.1016/j.ceramint.2019.04.255

    Article  Google Scholar 

  14. M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int. 40, 5489–5496 (2014). https://doi.org/10.1016/j.ceramint.2013.10.137

    Article  Google Scholar 

  15. W.-T. Li, X.-D. Zhang, X. Guo, Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sens. Actuators, B Chem. 244, 509–521 (2017). https://doi.org/10.1016/j.snb.2017.01.022

    Article  Google Scholar 

  16. C. Dong, X. Liu, B. Han, S. Deng, X. Xiao, Y. Wang, Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators, B Chem. 224, 193–200 (2016). https://doi.org/10.1016/j.snb.2015.09.107

    Article  Google Scholar 

  17. S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A.M. Jurdyc, C. Girard, G. Colas des Francs, Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles. Nanotechnology 24, 495704 (2013). https://doi.org/10.1088/0957-4484/24/49/495704

    Article  Google Scholar 

  18. Z. Hu, X. Xu, X. Wang, K. Yu, C. Liang, Ultrafine SnO2 nanoparticles anchored in the porous corn straw carbon substrate for high-performance Li-ion batteries application. J. Alloy. Compd. 835, 155446 (2020). https://doi.org/10.1016/j.jallcom.2020.155446

    Article  Google Scholar 

  19. N. Jayababu, M. Poloju, J. Shruthi, M.V.R. Reddy, Synthesis of ZnO/NiO nanocomposites for the rapid detection of ammonia at room temperature. Mater. Sci. Semicond. Process. 102, 104591 (2019). https://doi.org/10.1016/j.mssp.2019.104591

    Article  Google Scholar 

  20. W.-H. Zhang, W.-D. Zhang, Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sens. Actuators, B Chem. 134, 403–408 (2008). https://doi.org/10.1016/j.snb.2008.05.015

    Article  Google Scholar 

  21. N. Jayababu, M. Poloju, M.V. Ramana Reddy, Facile synthesis of SnO2-Fe2O3 core-shell nanostructures and their 2-methoxyethanol gas sensing characteristics. J. Alloy. Compd. 780, 523–533 (2019). https://doi.org/10.1016/j.jallcom.2018.11.413

    Article  Google Scholar 

  22. X. Xu, Y. Chen, G. Zhang, S. Ma, Y. Lu, H. Bian, Q. Chen, Highly sensitive VOCs-acetone sensor based on Ag-decorated SnO2 hollow nanofibers. J. Alloy. Compd. 703, 572–579 (2017). https://doi.org/10.1016/j.jallcom.2017.01.348

    Article  Google Scholar 

  23. N. Basavegowda, K. Mishra, R.S. Thombal, K. Kaliraj, Y.R. Lee, Sonochemical green synthesis of yttrium oxide (Y2O3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1, 3-thiazolidin-4-ones. Catal Lett. 147, 2630–2639 (2017). https://doi.org/10.1007/s10562-017-2168-4

    Article  Google Scholar 

  24. N. Bhakta, P.K. Chakrabarti, XRD analysis, rama n, AC conductivity and dielectric properties of Co and Mn co-doped SnO2 nanoparticles. Appl. Phys. A. 125, 73 (2019). https://doi.org/10.1007/s00339-018-2370-2

    Article  Google Scholar 

  25. D. Barreca, G.A. Battiston, D. Berto, R. Gerbasi, E. Tondello, Y2O3 Thin films characterized by XPS. Surf. Sci. Spectra 8, 234–239 (2001). https://doi.org/10.1116/11.20020404

    Article  Google Scholar 

  26. N. Basavegowda, K. Mishra, R.S. Thombal, K. Kaliraj, Y.R. Lee, Sonochemical green synthesis of yttrium oxide (Y2O3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1, 3-Thiazolidin-4-ones. Catal. Lett. 147, 2630–2639 (2017). https://doi.org/10.1007/s10562-017-2168-4

    Article  Google Scholar 

  27. A. Kar, A. Patra, Recent development of core–shell SnO2 nanostructures and their potential applications. J. Mater. Chem. C. 2, 6706–6722 (2014). https://doi.org/10.1039/C4TC01030B

    Article  Google Scholar 

  28. R. Deivasegamani, G. Karunanidhi, C. Santhosh, T. Gopal, D. Saravana achari, A. Neogi, R. Nivetha, N. Pradeep, U. Venkatraman, A. Bhatnagar, S.K. Jeong, A.N. Grace, Chemoresistive sensor for hydrogen using thin films of tin dioxide doped with cerium and palladium. Microchim Acta. 184, 4765–4773 (2017). https://doi.org/10.1007/s00604-017-2514-7

    Article  Google Scholar 

  29. J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000). https://doi.org/10.1039/a908800h

    Article  Google Scholar 

  30. H. Liu, S. Li, Q. Li, Y. Li, Investigation on the phase stability, sintering and thermal conductivity of Sc2O3–Y2O3–ZrO2 for thermal barrier coating application. Mater. Des. 31, 2972–2977 (2010). https://doi.org/10.1016/j.matdes.2009.12.019

    Article  Google Scholar 

  31. S. Sharma, A. Kumar, N. Singh, D. Kaur, Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms, sensors and actuators: B. Chemical (2018). https://doi.org/10.1016/j.snb.2018.08.046

    Article  Google Scholar 

  32. J. He, X. Yan, A. Liu, R. You, F. Liu, S. Li, J. Wang, C. Wang, P. sun, X. Yan, B. Kang, J. He, Y. Wang, G. Lu, The rapid-response room temperature planar type gas sensor based on the DPA-Ph-DBPzDCN for sensitive detection of NH3. J Mater Chem A (2019). https://doi.org/10.1039/C8TA10840D

    Article  Google Scholar 

  33. R. Kumar, A. Kumar, R. Singh, R. Kashyap, R. Kumar, D. Kumar, M. Kumar, Selective room temperature ammonia gas detection using 2-amino pyridine functionalized graphene oxide. Mater. Sci. Semicond. Process. 110, 104920 (2020). https://doi.org/10.1016/j.mssp.2020.104920

    Article  Google Scholar 

  34. A. Pasha, S. Khasim, F.A. Khan, N. Dhananjaya, Fabrication of gas sensor device using poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)-doped reduced graphene oxide organic thin films for detection of ammonia gas at room temperature. Iranian Poly. J. 28, 183–192 (2019). https://doi.org/10.1007/s13726-019-00689-4

    Article  Google Scholar 

  35. N. Jayababu, M. Poloju, M.V. Julakanti Shruthi, R. Reddy, Synthesis of ZnO/NiO nanocomposites for the rapid detection of ammonia at room temperature. Mater. Sci Semicond. Process. 102, 104591 (2019)

    Article  Google Scholar 

  36. B. Shen, F. Li, Y. Xie, J. Luo, P. Fan, A. Zhong, High performance ammonia gas sensor based on GaN honeycomb nanonetwork. Sens. Actuator. A 312, 112172 (2020). https://doi.org/10.1016/j.sna.2020.112172

    Article  Google Scholar 

  37. H.U. Khan, M. Tariq, M. Shah, M. Iqbal, M.T. Jan, Inquest of highly sensitive, selective and stable ammonia (NH3) gas sensor: Structural, morphological and gas sensing properties of polyvinylpyrrolidone (PVP)/CuO nanocomposite. Synth. Met. 268, 116482 (2020). https://doi.org/10.1016/j.synthmet.2020.116482

    Article  Google Scholar 

  38. Y. Tu, C. Kyle, H. Luo, D.-W. Zhang, A. Das, J. Briscoe, S. Dunn, M.-M. Titirici, S. Krause, Ammonia gas sensor response of a vertical zinc oxide nanorod-gold junction diode at room temperature. ACS Sens. 5, 3568–3575 (2020). https://doi.org/10.1021/acssensors.0c01769

    Article  Google Scholar 

  39. D. Kwak, M. Wang, K.J. Koski, L. Zhang, H. Sokol, R. Maric, Yu. Lei, Molybdenum trioxide (α-MoO3) nanoribbons for ultrasensitive ammonia (NH3) gas detection: integrated experimental and density functional theory simulation studies. ACS Appl. Mater. Interfaces 11, 10697–10706 (2019)

    Article  Google Scholar 

  40. T. Thomas, N. Jayababu, J. Shruthi, A. Mathew, A. Cerdán-Pasarán, J.A. Hernández-Magallanes, K.C. Sanal, R. R, Room temperature ammonia sensing of α-MoO3 nanorods grown on glass substrates. Thin Solid Films 722, 138575 (2021). https://doi.org/10.1016/j.tsf.2021.138575

    Article  Google Scholar 

  41. X. Wang, L. Gong, D. Zhang, X. Fan, Y. Jin, L. Guo, Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sens. Actuators B Chem. 322, 128615 (2020). https://doi.org/10.1016/j.snb.2020.128615

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Head, Department of Physics, Osmania University, Hyderabad for providing the necessary experimental facilities to carry out this work. The authors (JS & NJB) thankful to DST, New Delhi, India for providing financial assistance in the form of INSPIRE FELLOWSHIP during the research work. One of the authors (MVRR) thanks DST-SERB (File No: EMR/2017/002651) for providing the necessary financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julakanti Shruthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 615 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shruthi, J., Jayababu, N. & Reddy, M.V.R. Ag:Y2O3–SnO2 core-shell-based nanostructured sensor for achieving high ammonia sensing performance. Appl. Phys. A 128, 999 (2022). https://doi.org/10.1007/s00339-022-06142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06142-3

Keywords

Navigation