Skip to main content
Log in

Structural, magnetic and magnetocaloric effect of SmMn(1-x)CrxO3(x = 0.0, 0.3)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic and magnetocaloric properties of Cr-doped SmMnO3 perovskite manganites have been studied in the temperature range of 20–300 K. The doping of Cr in SmMnO3 leads to a lowering of the Neel Temperature (TN). The orthorhombically structured Pnma (62) space group of chromium-doped SmMnO3 was confirmed by powder X-ray diffraction measurements. The micrograin formation of the manganite was confirmed by the morphological analysis. The Neel temperature obtained from the temperature-dependent magnetization is illustrating the change from 40–50 K on decreasing concentration of chromium. The doping of chromium decreases the magnetic entropy change of SmMn(1-x)CrxO3(x = 0.0, 0.3) powders. The inclusion of Cr in SmMnO3 has been inferred and the increase in the magnetic entropy opens the possibility of its application as a refrigerant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Aparnadevi, R. Mahendiran, Alternating current magnetotransport in Sm0.1La 0.6Sr0.3MnO3. AIP Adv 3(1), 012114 (2013)

    Article  ADS  Google Scholar 

  2. P.K. Siwach, H.K. Singh, O.N. Srivastava, Low field magnetotransport in manganites. J. Phys. Condens. Matter 20(27), 273201 (2008)

    Article  Google Scholar 

  3. W. Liu et al., Efficient perovskite solar cells fabricated by manganese cations incorporated in hybrid perovskites. J. Mater. Chem. C 7, 11943–11952 (2019)

    Article  Google Scholar 

  4. K. Miura, D. Kiriya, T. Yoshimura, N. Fujimura, Correlation between photoluminescence and antiferromagnetic spin order in strongly correlated YMnO3 ferroelectric epitaxial thin film. AIP Adv. 11(7), 075122 (2021)

    Article  ADS  Google Scholar 

  5. D. Chen, Y.J. Wang, Y.L. Zhu, X.L. Ma, Effect of transition metal (TM) doping on structural and magnetic properties in hexagonal YMn0.917TM0.083O3 systems. Heliyon 4, 1–15 (2018)

    Article  Google Scholar 

  6. J.S. Jung, T. Nakamura, Y. Wakabayashi, T. Kimura, Direct evidence of simultaneous reversal of ferrimagnetically coupled Sm 4f and Mn 3d angular momenta in SmMnO3. J. Korean Phys. Soc. 76, 904–910 (2020)

    Article  ADS  Google Scholar 

  7. C. Niu et al., Implementation of artificial neurons with tunable width via magnetic anisotropy implementation of artificial neurons with tunable width via magnetic anisotropy. Appl. Phys. Lett. 119(20), 204101 (2021)

    Article  ADS  Google Scholar 

  8. T. Miao et al., Direct experimental evidence of physical origin of electronic phase separation in manganites. Proc. Natl. Acad. Sci. 117(13), 7090–7094 (2020). https://doi.org/10.1073/pnas.1920502117

    Article  ADS  Google Scholar 

  9. B.S. Nagaraja, A. Rao, P. Poornesh, G.S. Okram, Effect of rare earth ionic radii on structural, electric, magnetic and thermoelectric properties of REMnO3 (RE = Dy, Gd, Eu and Sm) manganites. J. Supercond. Nov. Magn. 31, 2271–2281 (2018)

    Article  Google Scholar 

  10. I. Chihi et al., Study of the magnetic and magnetocaloric properties of new perovskite-type materials: La0.6Ba0.2Sr0.2Mn1−xFexO3. Appl. Phys. A Mater. Sci. Process. 125, 1–7 (2019)

    Article  Google Scholar 

  11. N. Panwar et al., Structural, electrical, optical and magnetic properties of SmCrO3 chromites: influence of Gd and Mn co-doping. J. Alloys Compd. 792, 1122–1131 (2019)

    Article  Google Scholar 

  12. I.P. Kokila et al., Multiple magnetic phase transition and short-range ferromagnetic behavior influence on magnetocaloric effect of Sm2NiMnO6 nanoparticles. J. Nanoparticle Res. 22(8), 1–10 (2020)

    Article  Google Scholar 

  13. P. Zhang, T.L. Phan, S.C. Yu, Magnetocaloric effect in La0.7Cd0.3MnO3, La0.7Ba0.3MnO3, and Nd0.7Sr0.3MnO3. J. Supercond. Nov. Magn. 25, 2727–2730 (2012)

    Article  Google Scholar 

  14. R. Yin et al., Emergent enhanced electrocaloric effect within wide temperature span in laminated composite ceramics. Adv. Funct. Mater. 32(5), 2108182 (2022)

    Article  Google Scholar 

  15. Y. Bai, X. Wu, S. Zhao, Oxygen vacancy modulating inverse and conventional magnetocaloric effects coexisting in double perovskite Bi2NiMnO6-δ films. Ceram. Int. 47, 6614–6622 (2021)

    Article  Google Scholar 

  16. J.E. Yang, H. Xie, Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states. Front. Phys. 17(6), 1–9 (2022)

    Article  Google Scholar 

  17. J. Deisenhofer, M. Paraskevopoulos, H.A. Von Krug Nidda, A. Loidl, Interplay of superexchange and orbital degeneracy in cr-doped (formula presented). Phys. Rev. B Condens. Matter Mater. Phys. 66, 1–7 (2022)

    Google Scholar 

  18. J.A. Alonso, M.J. Martínez-Lope, M.T. Casais, M.T. Fernández-Díaz, Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 39, 917–923 (2000)

    Article  Google Scholar 

  19. S.Y. Dan’kov, A. Tishin, V. Pecharsky, K. Gschneidner, Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B Condens. Matter Mater. Phys. 57, 3478–3490 (1998)

    Article  ADS  Google Scholar 

  20. P.T. Phong et al., Griffiths-like phase, critical behavior near the paramagnetic-ferromagnetic phase transition and magnetic entropy change of nanocrystalline La0.75Ca0.25MnO3. J. Magn. Magn. Mater. 449, 558–566 (2018)

    Article  ADS  Google Scholar 

  21. Joly, V. L. Joseph. Synthesis, Characterization, and Magnetic Properties of Substituted Perovskite-type Manganates and Related Oxides (2004)

  22. A. Modi, N.K. Gaur, Structural, electrical and magnetic phase evolution of Cr substituted GdMn1-xCrxO3 (0 ≤ x ≤ 0.2) manganites. J. Alloys Compd. 644, 575–581 (2015)

    Article  Google Scholar 

  23. S. Biswas, M.H. Khan, S. Pal, E. Bose, Evolution of magnetic properties in Cr doped manganites Gd 0.7Ca0.3Mn1-xCrxO3 (x=0.0-0.5). J. Magn. Magn. Mater. 328, 31–34 (2013)

    Article  ADS  Google Scholar 

  24. M.A. Ahmed, N. Okasha, S.M. Abdelwahab, A.A. Elazim, Influence-of-A-site-cation-size-variation-on-the-magnetic-properties. Int. J. Sci. Eng. Res. 6(7), 1832–1845 (2015)

    Google Scholar 

  25. J. Mantilla et al., Field-driven spin reorientation in SmMnO3 polycrystalline powders. J. Alloys Compd. 845, 156327 (2020)

    Article  Google Scholar 

  26. S.A. Uporov, V.Y. Mitrofanov, O.M. Fedorova, A.Y. Fishman, Magnetic properties of mechanically activated SmMnO3 powders. J. Mater. Sci. 48, 7673–7678 (2013)

    Article  ADS  Google Scholar 

  27. Y. Sun, W. Tong, X. Xu, Y. Zhang, Possible double-exchange interaction between manganese and chromium in LaMn1-xCrxO3. Phys. Rev. B Condens. Matter Mater. Phys. 63, 1–5 (2001)

    Article  Google Scholar 

  28. A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748 (2004), https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf

  29. V. Cuartero et al., Stability of Jahn-Teller distortion ordering in LaMn1-x Scx O3. Phys. Rev. B Condens. Matter Mater. Phys 92, 125118 (2015)

    Article  ADS  Google Scholar 

  30. P.R. Sagdeo, S. Anwar, N.P. Lalla, Powder X-ray diffraction and Rietveld analysis of La 1–x Ca x MnO3 (0< X <1). Powder Diffr. 21, 40–44 (2006)

    Article  ADS  Google Scholar 

  31. R. Bindu, S.K. Pandey, A. Kumar, S. Khalid, A.V. Pimpale, Local distortion of MnO6 octahedron in La1− xSrxMnO3+ δ (x= 0.1–0.9): an EXAFS study. J. Condens. Matter Phys. 17(41), 6393 (2005)

    Article  ADS  Google Scholar 

  32. P.T. Long, D.N. Petrov, J. Ćwik, N.T. Dang, V. Dongquoc, Short-range magnetic order in La1-xBaxCoO3 cobaltites. Curr. Appl. Phys. 18, 1248–1254 (2018)

    Article  ADS  Google Scholar 

  33. O.M. Fedorova et al., Structural properties of mechanically activated rare-earth manganites. Chem. Mater. Eng. 2, 58–71 (2014)

    Article  Google Scholar 

  34. M. Algueró, J.A. Quintana-Cilleruelo, O. Peña, A. Castro, Magnetic properties across the YMnO3-BiFeO3 system designed for phase-change magnetoelectric response. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol 266, 115055 (2021)

    Article  Google Scholar 

  35. F. Wan et al., Crystalline structure and dielectric properties of multiferroic Cr-doped YMnO3. J. Mater. Sci. Mater. Electron. 27, 3082–3087 (2016)

    Article  ADS  Google Scholar 

  36. N. Jiang, Y. Jiang, Q. Lu, S. Zhao, Dynamic exchange effect induced multi-state magnetic phase diagram in manganese oxide Pr1–x Cax MnO3. J. Alloys Compd. 805, 50–56 (2019)

    Article  Google Scholar 

  37. K. Ahadi et al., Anisotropic magnetoresistance in the itinerant antiferromagnetic EuTiO3. Phys. Rev. 99(4), 041106 (2019)

    Article  MathSciNet  Google Scholar 

  38. I.P. Kokila et al., Structural, magnetic and magnetocaloric properties of EuMnO3 perovskite manganite: a comprehensive MCE study. Mater. Res. Express 5, 26107 (2018)

    Article  Google Scholar 

  39. N. Pavan Kumar et al., Magnetic, thermal and magnetocaloric studies of polycrystalline HoMnO3 compound. Appl. Phys. A Mater. Sci. Process. 125, 1–7 (2019)

    Article  ADS  Google Scholar 

  40. S.G. Min, K.S. Kim, S.C. Yu, H.S. Suh, S.W. Lee, Magnetocaloric properties of La1 x Pbx MnO3. IEEE Trans. Magn. 41, 2760–2762 (2005)

    Article  ADS  Google Scholar 

  41. A. Midya et al., Large adiabatic temperature and magnetic entropy changes in EuTiO3. Phys. Rev. B 93(9), 094422 (2016)

    Article  ADS  Google Scholar 

  42. Y. Sun, W. Tong, Y. Zhang, Large magnetic entropy change above 300 K in La. J. Magn. Magn. Mater. 232, 205–208 (2001)

    Article  ADS  Google Scholar 

  43. L. Nd et al., Magnetic entropy change in perovskite manganites. Phys. B Condens. Matter 234, 371–374 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank VIT management for their continuous support and encouragement to carry out research and development works, and to Mrs. M.V. Beena, IITM, Chennai for providing VSM facilities to perform magnetic characterization study. Authors are gratefully acknowledged Dr. K. Phebe Kokila and Dr. Anilkumar Paidi for good suggestions and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saminathan Madeswaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathishkumar, P., Madeswaran, S. Structural, magnetic and magnetocaloric effect of SmMn(1-x)CrxO3(x = 0.0, 0.3). Appl. Phys. A 128, 1010 (2022). https://doi.org/10.1007/s00339-022-06139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06139-y

Keywords

Navigation