Skip to main content
Log in

Effect of Pd on the superconductivity in non-centrosymmetric \(\hbox {Mo}_{3}\hbox {Al}_{2-{x}}\hbox {Pd}_{x}\hbox {C}\) alloys, with x = 0.00, 0.05 and 0.10

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied the effect of partial substitution of Al by Pd in the non-centrosymmetric superconducting intermetallic alloy \(\hbox {Mo}_{3}\hbox {Al}_{2}\hbox {C}\). Magnetization, resistivity and specific heat measurements, as a function of temperature, were performed in the system \(\hbox {Mo}_{3}\hbox {Al}_{2-{x}}\hbox {Pd}_{x}\hbox {C}\) with x = 0.0, 0.05 and 0.10. The magnetic, electrical and thermal measurements show that the effect of substitution of Al by Pd is to lower the transition temperature to the superconducting state \(T_c\). Using the Werthamer–Helfand–Hohenberg theory, the temperature dependence of the upper critical field was analyzed. From specific heat measurements, parameters of the normal and superconductor state were estimated. The estimated values of Sommerfeld’s constant indicate that the presence of Pd in \(\hbox {Mo}_{3}\hbox {Al}_{2}\hbox {C}\) affects the Fermi surface. Power laws in \(C_e\) indicate the existence of nodes or lines of nodes in the superconducting gap; this indicates that \(\hbox {Mo}_{3}\hbox {Al}_{2-{x}}\hbox {Pd}_{x}\hbox {C}\) is not a conventional superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Yip, Annu. Rev. Condens Matter Phys. 5(1), 15 (2014)

    ADS  Google Scholar 

  2. F. Kneidinger, E. Bauer, I. Zeiringer, P. Rogl, C. Blaas-Schenner, D. Reith, R. Podloucky, Phys. C (Amst, Neth.) 514, 388 (2015)

    ADS  Google Scholar 

  3. M. Naskar, P.K. Mishra, S. Ash, A.K. Ganguli, Bull. Mater. Sci. 44(4), 278 (2021)

    Google Scholar 

  4. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    ADS  MathSciNet  Google Scholar 

  5. G.R. Stewart, Adv. Phys. 66(2), 75 (2017)

    ADS  Google Scholar 

  6. B. White, J. Thompson, M. Maple, Phys. C (Amst., Neth.) 514, 246 (2015)

    ADS  Google Scholar 

  7. G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984)

    ADS  Google Scholar 

  8. E. Bauer, G. Hilscher, H. Michor, C. Paul, E.W. Scheidt, A. Gribanov, Y. Seropegin, H. Noël, M. Sigrist, P. Rogl, Phys. Rev. Lett. 92, 027003 (2004)

    ADS  Google Scholar 

  9. M. Smidman, M.B. Salamon, H.Q. Yuan, D.F. Agterberg, Rep. Prog. Phys. 80(3), 036501 (2017)

    ADS  Google Scholar 

  10. P. Koželj, M. Juckel, A. Amon, Y. Prots, A. Ormeci, U. Burkhardt, M. Brando, A. Leithe-Jasper, Y. Grin, E. Svanidze, Sci. Rep. 11(1), 22352 (2021)

    ADS  Google Scholar 

  11. A.B. Karki, Y.M. Xiong, I. Vekhter, D. Browne, P.W. Adams, D.P. Young, K.R. Thomas, J.Y. Chan, H. Kim, R. Prozorov, Phys. Rev. B 82, 064512 (2010)

    ADS  Google Scholar 

  12. K. Togano, P. Badica, Y. Nakamori, S. Orimo, H. Takeya, K. Hirata, Phys. Rev. Lett. 93, 247004 (2004)

    ADS  Google Scholar 

  13. H. Takeya, K. Yamada, K. Yamaura, T. Mochiku, H. Fujii, T. Furubayashi, K. Hirata, K. Togano, Phys. C 426–431, 411 (2005)

    ADS  Google Scholar 

  14. A. Castro, O. Olicón, R. Escamilla, F. Morales, Solid State Commun. 255–256, 11 (2017)

    ADS  Google Scholar 

  15. A.A. Castro, O. Olicón, F. Morales, R. Escudero, Appl. Phys. A 127(10), 782 (2021)

    ADS  Google Scholar 

  16. T.P. Ying, Y.P. Qi, H. Hosono, Phys. Rev. B 100, 094522 (2019)

    ADS  Google Scholar 

  17. B. Ramachandran, J.Y. Jhiang, Y.K. Kuo, C.N. Kuo, C.S. Lue, Supercond. Sci. Technol. 29(3), 035003 (2016)

    ADS  Google Scholar 

  18. J.N. Sun, B.B. Ruan, M.H. Zhou, Y. Chen, Q.S. Yang, L. Shan, M.W. Ma, G.F. Chen, Z.A. Ren, Chin. Phys. B 30(7), 077401 (2021)

    ADS  Google Scholar 

  19. Q. Zhu, G. Xiao, Y. Cui, W. Yang, S. Wu, Gh. Cao, Z. Ren, J. Mater. Chem. C 10, 6070 (2022)

    Google Scholar 

  20. T. Shang, M. Smidman, A. Wang, L.J. Chang, C. Baines, M.K. Lee, Z.Y. Nie, G.M. Pang, W. Xie, W.B. Jiang, M. Shi, M. Medarde, T. Shiroka, H.Q. Yuan, Phys. Rev. Lett. 124, 207001 (2020)

    ADS  Google Scholar 

  21. W. Yang, Z. Lou, Q. Zhu, B. Chen, H. Wang, Q. Mao, J. Du, J. Yang, M. Fang, Supercond. Sci. Technol. 32(11), 115014 (2019)

    ADS  Google Scholar 

  22. L.P. Gor’kov, E.I. Rashba, Phys. Rev. Lett. 87, 037004 (2001)

    ADS  Google Scholar 

  23. P.W. Anderson, Phys. Rev. B 30, 4000 (1984)

    ADS  Google Scholar 

  24. P.A. Frigeri, D.F. Agterberg, A. Koga, M. Sigrist, Phys. Rev. Lett. 92, 097001 (2004)

    ADS  Google Scholar 

  25. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)

    ADS  Google Scholar 

  26. E. Bauer, G. Rogl, X.Q. Chen, R.T. Khan, H. Michor, G. Hilscher, E. Royanian, K. Kumagai, D.Z. Li, Y.Y. Li, R. Podloucky, P. Rogl, Phys. Rev. B 82, 064511 (2010)

    ADS  Google Scholar 

  27. T. Koyama, Y. Maeda, T. Yamazaki, Ki. Ueda, T. Mito, T. Kohara, T. Waki, Y. Tabata, H. Tsunemi, M. Ito, H. Nakamura, J. Phys. Soc. Jpn. 82(7), 073709 (2013)

    ADS  Google Scholar 

  28. J.C. Slater, J. Chem. Phys. 41(10), 3199 (1964)

    ADS  Google Scholar 

  29. A. Coelho, Coelho Software (2012)

  30. L. Toth, J. Zbasnik, Acta Metall. 16(9), 1177 (1968)

    Google Scholar 

  31. P. Badica, T. Kondo, K. Togano, J. Phys. Soc. Jpn. 74(3), 1014 (2005)

    ADS  Google Scholar 

  32. T. Klimczuk, Q. Xu, E. Morosan, J.D. Thompson, H.W. Zandbergen, R.J. Cava, Phys. Rev. B 74, 220502 (2006)

    ADS  Google Scholar 

  33. A. Mani, N. Gayathri, A. Bharathi, Solid State Commun. 149(23), 899 (2009)

    ADS  Google Scholar 

  34. P.K. Biswas, M.R. Lees, A.D. Hillier, R.I. Smith, W.G. Marshall, D.M. Paul, Phys. Rev. B 84, 184529 (2011)

    ADS  Google Scholar 

  35. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, London, 1996)

    Google Scholar 

  36. A.B. Karki, Y.M. Xiong, N. Haldolaarachchige, S. Stadler, I. Vekhter, P.W. Adams, D.P. Young, W.A. Phelan, J.Y. Chan, Phys. Rev. B 83, 144525 (2011)

    ADS  Google Scholar 

  37. A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962)

    ADS  Google Scholar 

  38. A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003)

    Google Scholar 

  39. W.L. McMillan, Phys. Rev. 167, 331 (1968)

    ADS  Google Scholar 

  40. H. Takeya, K. Hirata, K. Yamaura, K. Togano, M. El Massalami, R. Rapp, F.A. Chaves, B. Ouladdiaf, Phys. Rev. B 72, 104506 (2005)

    ADS  Google Scholar 

  41. D. Reith, C. Blaas-Schenner, R. Podloucky, Phys. Rev. B 86, 104105 (2012)

    ADS  Google Scholar 

  42. N.D. Zhigadlo, D. Logvinovich, V.A. Stepanov, R.S. Gonnelli, D. Daghero, Phys. Rev. B 97, 214518 (2018)

    ADS  Google Scholar 

  43. H. Takeya, M. ElMassalami, S. Kasahara, K. Hirata, Phys. Rev. B 76, 104506 (2007)

    ADS  Google Scholar 

  44. H. Takeya, H. Fujii, M. ElMassalami, F. Chaves, S. Ooi, T. Mochiku, Y. Takano, K. Hirata, K. Togano, J. Phys. Soc. Jpn. 80(1), 013702 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Escamilla for the ease of use of its laboratory for the synthesis of samples, R. Escudero for facilities for performing the measurements, and also A. Bobadilla for technical assistance. O. Olicón would like to thank CONACYT, for support through the Postdoctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Olicón.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olicón, O., Castro, A.A. & Morales, F. Effect of Pd on the superconductivity in non-centrosymmetric \(\hbox {Mo}_{3}\hbox {Al}_{2-{x}}\hbox {Pd}_{x}\hbox {C}\) alloys, with x = 0.00, 0.05 and 0.10. Appl. Phys. A 128, 1006 (2022). https://doi.org/10.1007/s00339-022-06121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06121-8

Keywords

Navigation