Skip to main content
Log in

Temperature-dependent time relaxation of ON and OFF states in NiO\(_{x}\)-based crossbar memory arrays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The time-dependence of ON and OFF switching states in Pt/NiO\(_{x}\)/Pt crossbar devices was measured between 300 K and 180 K. We find that the OFF-state resistance increases with time and this positive relaxation rate is reduced upon cooling, whereas the resistance decreases with time for the device in the ON state, and such negative relaxation rate increases with cooling and below 260 K, it becomes temperature independent. Furthermore, devices with a larger OFF/ON ratio and negligibly small relaxation rates at low temperatures may present great benefits for cryogenic memory applications. In this work, we discuss the mechanism behind these thermally and bias activated changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.A.A.M. Abdah, M. Mokhtar, L.T. Khoon, K. Sopian, N.A. Dzulkurnain, A. Ahmad, Y. Sulaiman, F. Bella, M.S. Suait, Synthesis and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries. Energy Rep. 7, 8677–8687 (2021)

    Article  Google Scholar 

  2. C. Baiano, E. Schiavo, C. Gerbaldi, F. Bella, G. Meligrana, G. Talarico, P. Maddalena, M. Pavone, A.B. Muñoz-García, Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide. MoI 496, 111181 (2020)

    Google Scholar 

  3. L. Hyunjoon, R. Da Gil, L. Giho, S. Min-Kyu, M. Hyungjin, L. Jaehyeong, R. Jongchan, K. Ji-Hoon, S. Junmin, K. Sangbum, L. Jongwoo, J. Dongsuk, K. Seyoung, K. Jeehwan, S.L. Yun, Vertical metal-oxide electrochemical memory for high-density synaptic array based high-performance neuromorphic computing. Adv. Electron. Mater. 8, 2200378 (2022)

    Article  Google Scholar 

  4. Y.C. Chen, C.C. Lin, S. Kim, J.C. Lee, Selectorless oxide-based resistive switching memory with nonuniform dielectric for low power crossbar Ar ray applications. ECS Trans. 89(3), 45–51 (2019)

    Article  Google Scholar 

  5. F. Bella, S.D. Luca, L. Fagiolari, D. Versaci, J. Amici, C. Francia, S. Bodoardo, An overview on anodes for magnesium batteries: challenges towards a promising storage solution for renewables. Nanomaterials 11(3), 810 (2021)

    Article  Google Scholar 

  6. C. Roberto, G. Nadia, V. Daniele, A. Julia, L.P. Maria, Q. Eliana, F. Carlotta, B. Federico, B. Silvia, Designing a double-coated cathode with high entropy oxides by microwave-assisted hydrothermal synthesis for highly stable Li-S batteries. J. Mater. Sci. 57, 15690–15704 (2022)

    Article  Google Scholar 

  7. Y. Beilliard, F. Paquette, F. Brousseau, S. Ecoffey, F. Alibart, D. Drouin, Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOScompatible Al\(_{2}\)O\(_{3}\)/TiO\(_{2}\) resistive memories. Nanotechnology 31, 445205 (2020)

    Article  ADS  Google Scholar 

  8. H.S. Alagoz, L. Tan, J. Jung, K.H. Chow, Switching characteristics of NiO\(_{x}\) crossbar arrays driven by low-temperature electroforming. Appl. Phys. A 127, 499 (2021)

    Article  ADS  Google Scholar 

  9. S.-H. Phark, S.C. Chae, Initial defect configuration in NiO film for reliable unipolar resistance switching of Pt/NiO/Pt structure. J. Phys. D 48, 155102 (2015)

    Article  ADS  Google Scholar 

  10. W. Lin, K. Zhu, Y. Su, H. Shi, Y. Meng, H. Zhao, In situ observation of conducting filament in NiO memristive devices by electroluminescence. Appl. Phys. Lett. 112, 133504 (2018)

    Article  ADS  Google Scholar 

  11. S. Chang, S.C. Chae, S.B. Lee, C. Liu, T.W. Noh, J.S. Lee, B. Kahng, J.H. Jang, M.Y. Kim, D.-W. Kim, C.U. Jung, Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Appl. Phys. Lett. 92, 183507 (2008)

    Article  ADS  Google Scholar 

  12. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13 (2013)

    Article  ADS  Google Scholar 

  13. H. Shima, F. Takano, H. Akinaga, Y. Tamai, I.H. Inoue, H. Takagi, Resistance switching in the metal deficient-type oxides: NiO and CoO. Appl. Phys. Lett. 91, 012901 (2007)

    Article  ADS  Google Scholar 

  14. D.-W. Kim, R. Jung, B.H. Park, X.-S. Li, C. Park, S. Shin, D.-C. Kim, C.W. Lee, S. Seo, Structural Properties and Resistance-Switching Behavior of Thermally Grown NiO Thin Films. Jpn. J. Appl. Phys. 47, 1635 (2008)

    Article  ADS  Google Scholar 

  15. H.D. Lee, B. Magyari-Köpe, Y. Nishi, Model of metallic filament formation and rupture in NiO for unipolar switching. Phys. Rev. B 81, 193202 (2010)

    Article  ADS  Google Scholar 

  16. J. Li, C. Yao, Y. Ke, W. Huang, S.K. Thatikonda, N. Qin, D. Bao, Understanding the coexistence of unipolar and bipolar resistive switching in NiFe\(_{2}\)O\(_{4}\) resistive memory devices. Appl. Phys. Lett. 120, 133501 (2022)

    Article  ADS  Google Scholar 

  17. W.-M. Chung, Y.-F. Chang, Y.-L. Hsu, Y.C.D. Chen, C.-C. Lin, C.-H. Lin, J. Leu, A study of the relationship between endurance and retention reliability for a HfO\(_{x}\)-based resistive switching memory. IEEE Trans. Device Mater. Reliab. 20, 541 (2020)

    Article  Google Scholar 

  18. Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, K. Aono, Retention model for high-density ReRAM. In: Proceedings of the 4th IEEE International Memory Workshop, pp. 1–4 (2012)

  19. L.-G. Wang, X. Qian, Y.-Q. Cao, Z.-Y. Cao, G.-Y. Fang, A.-D. Li, D. Wu, Excellent resistive switching properties of atomic layer-deposited Al\(_{2}\)O\(_{3}\)/HfO\(_{2}\)/Al\(_{2}\)O\(_{3}\) trilayer structures for non-volatile memory applications. Nanoscale Res. Lett. 10, 135 (2015)

    Article  ADS  Google Scholar 

  20. B. Walls, A.A. Mazilkin, B.O. Mukhamedov, A. Ionov, I.A. Smirnova, A.V. Ponomareva, K. Fleischer, N.A. Kozlovskaya, D.A. Shulyatev, I.A. Abrikosov, I.V. Shvets, S.I. Bozhko, Nanodomain structure of single crystalline nickel oxide. Sci. Rep. 11, 3496 (2021)

    Article  ADS  Google Scholar 

  21. W. Xia, X. Sun, Y. Yin, C. Jia, G. Li, W. Zhang, Origin of resistance state relaxation and nonvolatile features in NiO films: interfacial vs filamentary resistive switching. AIP Adv. 10, 105319 (2020)

    Article  ADS  Google Scholar 

  22. X. Chen, G. Wu, D. Bao, Resistive switching behavior of Pt/Mg\(_{0.2}\)Zn\(_{0.8}\)/Pt devices for nonvolatile memory applications. Appl. Phys. Lett. 93, 093501 (2008)

    Article  ADS  Google Scholar 

  23. G.-F. Yu, M. Yu, W. Pan, W.-P. Han, X. Yan, J.-C. Zhang, H.-D. Zhang, Y.-Z. Long, Electrical transport properties of an isolated CdS microrope composed of twisted nanowires. Nanoscale Res. Lett. 10, 21 (2015)

    Article  ADS  Google Scholar 

  24. Y. Li, S. Kvatinsky, L. Kornblum, Harnessing conductive oxide interfaces for resistive random-access memories. Front. Phys. 9, 1–9 (2021)

    Article  Google Scholar 

  25. G. Ma, X. Tang, H. Zhang, Z. Zhong, X. Li, J. Li, H. Su, Ultra-high ON/OFF ratio and multi-storage on NiO resistive switching device. J. Mater. Sci. 52, 238 (2017)

    Article  ADS  Google Scholar 

  26. R.W. Smith, A. Rose, Space-charge-limited currents in single crystals of cadmium sulfide. Phys. Rev. 97, 1531 (1955)

    Article  ADS  Google Scholar 

  27. W. Xu, A. Chin, L. Ye, C.Z. Ning, H. Yu, Charge transport and trap characterization in individual GaSb nanowires. J. Appl. Phys. 111, 104515 (2012)

    Article  ADS  Google Scholar 

  28. V.E. Henrich, P.A. Cox, Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  29. P. Mitra, A.P. Chatterjee, H.S. Maiti, ZnO thin film sensor. Mater. Lett. 35, 33 (1998)

    Article  Google Scholar 

  30. J.J. Ke, Z.J. Liu, C.F. Kang, S.J. Lin, J.H. He, Surface effect on resistive switching behaviors of ZnO. Appl. Phys. Lett. 99, 192106 (2011)

    Article  ADS  Google Scholar 

  31. H. Kim, M.-J. Choi, J.M. Suh, J.S. Han, S.G. Kim, Q.V. Le, S.Y. Kim, H.W. Jang, Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 10\(^{9}\). NPG Asia Mater. 12, 21 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Alagoz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagoz, H.S., Egilmez, M., Jung, J. et al. Temperature-dependent time relaxation of ON and OFF states in NiO\(_{x}\)-based crossbar memory arrays. Appl. Phys. A 128, 1004 (2022). https://doi.org/10.1007/s00339-022-06120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06120-9

Keywords

Navigation