Skip to main content
Log in

Tuning optical bandgap of crystalline MgO by MeV Co ion beam induced defects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Modifying bandgap by ion implantation based defect-engineering is a widely used technique for electronic and optoelectronic device fabrications. This report studies the influence of defect on bandgap modification in MgO single-crystal by MeV Co ion implantation in the fluence range of \(5\times 10^{14}\) to \(1\times 10^{16}\text { ions/cm}^2\). The substitutional defects, F and V type color centers have been identified and characterized from optical absorption and photoluminescence spectra. We elucidated a mechanism of the electronic transition from F centers to conduction band via \(F^+\) center and subsequent de-excitation. The F center concentration increases with ion fluences while the bandgap obtained from the Tauc plotting gradually decreases. The band structure and density of states of different defects associated with MgO after ion implantation were calculated using density functional theory to explain the experimental bandgap modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Akhtar, R. Pilevarshahri, M.R. Benam, Investigating and comparison of electronic and optical properties of MgO nanosheet in (100) and (111) structural directions based on the density functional theory. Physica B 502, 61–67 (2016)

    ADS  Google Scholar 

  2. U. Sharma, P. Jeevanandam, Synthesis of Zn\(^{2+}\) doped MgO nanoparticles using substituted brucite precursors and studies on their optical properties. J. Sol-Gel. Sci. Technol. 75(3), 635–648 (2015)

    Google Scholar 

  3. P. Jeevanandam, K. Klabunde, A study on adsorption of surfactant molecules on magnesium oxide nanocrystals prepared by an aerogel route. Langmuir 18(13), 5309–5313 (2002)

    Google Scholar 

  4. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, A.A. Mutar, Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym Mater. 26(2), 326–334 (2016)

    Google Scholar 

  5. C. White, C. McHargue, P. Sklad, L. Boatner, G. Farlow, Ion implantation and annealing of crystalline oxides. Mater. Sci. Reports 4(2), 41–146 (1989)

    Google Scholar 

  6. V. Markevich, A comparative study of ion implantation and irradiation-induced defects in Ge crystals. Mater. Sci. Semicond. Process. 9(4–5), 589–596 (2006)

    Google Scholar 

  7. S. Azzaza, M. El-Hilo, S. Narayanan, J.J. Vijaya, N. Mamouni, A. Benyoussef, A. El Kenz, M. Bououdina, Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles. Mater. Chem. Phys. 143(3), 1500–1507 (2014)

    Google Scholar 

  8. W. Mackrodt, R. Stewart, Defect properties of ionic solids. I. Point defects at the surfaces of face-centred cubic crystals. J. Phys. C: Solid State Phys. 10(9), 1431 (1977)

    ADS  Google Scholar 

  9. A. Gibson, R. Haydock, J.P. LaFemina, Stability of vacancy defects in MgO: the role of charge neutrality. Phys. Rev. B 50(4), 2582 (1994)

    ADS  Google Scholar 

  10. J.W. Lee, J.-H. Ko, Defect states of transition metal-doped MgO for secondary electron emission of plasma display panel. J. Inf. Display 15(4), 157–161 (2014)

    Google Scholar 

  11. N.C.S. Selvam, R.T. Kumar, L.J. Kennedy, J.J. Vijaya, Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloy. Compd. 509(41), 9809–9815 (2011)

    Google Scholar 

  12. H. Wu, A. Stroppa, S. Sakong, S. Picozzi, M. Scheffler, P. Kratzer, Magnetism in C -or N-doped MgO and ZnO: a density-functional study of impurity pairs. Phys. Rev. Lett. 105(26), 267203 (2010)

    ADS  Google Scholar 

  13. S. Ramachandran, J. Narayan, J. Prater, Magnetic properties of Ni-doped MgO diluted magnetic insulators. Appl. Phys. Lett. 90(13), 132511 (2007)

    ADS  Google Scholar 

  14. N. Vasil’eva, N. Uvarov, Electrical conductivity of magnesium oxide as a catalyst for radical chain hydrocarbon pyrolysis reactions. Kinet. Catal. 52(1), 98–103 (2011)

    Google Scholar 

  15. A.A. Yar, M. Montazerian, H. Abdizadeh, H. Baharvandi, Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J. Alloy. Compd. 484(1–2), 400–404 (2009)

    Google Scholar 

  16. W.T. Doyle, Absorption of light by colloids in alkali halide crystals. Phys. Rev. 111(4), 1067 (1958)

    ADS  Google Scholar 

  17. A. Perez, G. Marest, B. Sawicka, J. Sawicki, T. Tyliszczak, Iron-ion-implantation effects in MgO crystals. Phys. Rev. B 28(3), 1227 (1983)

    ADS  Google Scholar 

  18. S. Zhu, X. Xiang, X. Zu, L. Wang, Magnetic nano-particles of Ni in MgO single crystals by ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B 242(1–2), 114–117 (2006)

    ADS  Google Scholar 

  19. J. Narayan, Y. Chen, R. Moon, Nickel colloids in reduced nickel-doped magnesium oxide. Phys. Rev. Lett. 46(22), 1491 (1981)

    ADS  Google Scholar 

  20. D. Misra, S.K. Yadav, Prediction of site preference of implanted transition metal dopants in rock-salt oxides. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  21. Y. Motoyama, Y. Hirano, K. Ishii, Y. Murakami, F. Sato, Influence of defect states on the secondary electron emission yield \(\gamma\) from MgO surface. J. Appl. Phys. 95(12), 8419–8424 (2004)

    ADS  Google Scholar 

  22. G. Rosenblatt, M. Rowe, G. Williams Jr., R. Williams, Y. Chen, Luminescence of F and \({F^+}\) centers in magnesium oxide. Phys. Rev. B 39(14), 10309 (1989)

    ADS  Google Scholar 

  23. X. Xiang, X. Zu, S. Zhu, C. Zhang, L. Wang, Effect of annealing on the optical absorption of Ni nanoparticles in MgO single crystals. Nucl. Instrum. Methods Phys. Res. Sect. B 250(1–2), 229–232 (2006)

    ADS  Google Scholar 

  24. N. Pathak, P.S. Ghosh, S.K. Gupta, R.M. Kadam, A. Arya, Defects induced changes in the electronic structures of MgO and their correlation with the optical properties: a special case of electron-hole recombination from the conduction band. RSC Adv. 6(98), 96398–96415 (2016)

    ADS  Google Scholar 

  25. M. Cruz, R. da Silva, J. Pinto, R.G. González, E. Alves, M. Godinho, Magnetic behavior of Co and Ni implanted MgO. J. Magn. Magn. Mater. 272, 840–842 (2004)

    ADS  Google Scholar 

  26. B. Savoini, R. Gonzalez, J. Pinto, R. da Silva, E. Alves, Copper and cobalt nanocolloids in implanted MgO crystals. Nucl. Instrum. Methods Phys. Res. Sect. B 257(1–2), 563–567 (2007)

    ADS  Google Scholar 

  27. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268(11), 1818–1823 (2010)

    ADS  Google Scholar 

  28. D. Roessler, W. Walker, Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys. Rev. 159(3), 733 (1967)

    ADS  Google Scholar 

  29. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    ADS  Google Scholar 

  30. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Google Scholar 

  31. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)

    ADS  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  33. H. Monkshort, J. Pack, Special points for brillouin-zone integration. Phys. Rev. B 13, 5188–5192 (1976)

    ADS  MathSciNet  Google Scholar 

  34. P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B 49(23), 16223 (1994)

    ADS  Google Scholar 

  35. E. Ertekin, L.K. Wagner, J.C. Grossman, Point-defect optical transitions and thermal ionization energies from quantum monte carlo methods: application to the F-center defect in MgO. Phys. Rev. B 87(15), 155210 (2013)

    ADS  Google Scholar 

  36. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    ADS  Google Scholar 

  37. X. Xiao, J. Xu, F. Ren, C. Liu, C. Jiang, Fabrication of Ag nanoclusters in single-crystal MgO by high-energy ion implantation. Physica E 40(3), 705–708 (2008)

    ADS  Google Scholar 

  38. A. Kumar, J. Kumar, On the synthesis and optical absorption studies of nano-size magnesium oxide powder. J. Phys. Chem. Solids 69(11), 2764–2772 (2008)

    ADS  Google Scholar 

  39. M. Shah, A. Qurashi, Novel surfactant-free synthesis of MgO nanoflakes. J. Alloy. Compd. 482(1–2), 548–551 (2009)

    Google Scholar 

  40. T. Mitamura, K. Kawatsura, R. Takahashi, T. Adachi, T. Igarashi, S. Arai, N. Masuda, Y. Aoki, S. Yamamoto, K. Narumi et al., Radiation effects of 200 KeV and 1 MeV Ni ion on MgO single crystal. J. Nucl. Mater. 271, 15–20 (1999)

    ADS  Google Scholar 

  41. Y. Qian, D. Ila, R. Zimmerman, D. Poker, L. Boatner, D. Hensley, Mev silver ion implantation induced changes in optical properties of MgO (100). Nucl. Instrum. Methods Phys. Res. Sect. B 127, 524–527 (1997)

    ADS  Google Scholar 

  42. P. Devaraja, D. Avadhani, H. Nagabhushana, S. Prashantha, S. Sharma, B. Nagabhushana, H. Nagaswarupa, B.D. Prasad, Luminescence properties of MgO: \({Fe^{3+}}\) nanopowders for WLEDs under NUV excitation prepared via propellant combustion route. J. Radiat. Res. Appl. Sci. 8(3), 362–373 (2015)

    Google Scholar 

  43. C. Trautmann, M. Toulemonde, K. Schwartz, J. Costantini, A. Müller, Damage structure in the ionic crystal LiF irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 164, 365–376 (2000)

    ADS  Google Scholar 

  44. G. Baubekova, A. Akilbekov, E. Feldbach, R. Grants, I. Manika, A.I. Popov, K. Schwartz, E. Vasil’chenko, M. Zdorovets, A. Lushchik, Accumulation of radiation defects and modification of micromechanical properties under MgO crystal irradiation with swift 132xe ions. Nucl. Instrum. Methods Phys. Res. Sect. B 463, 50–54 (2020)

    ADS  Google Scholar 

  45. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III., Evaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model system. Physica status solidi (b) 252(8), 1700–1710 (2015)

    ADS  Google Scholar 

  46. V. Nefedova, S. Fröhlich, F. Navarrete, N. Tancogne-Dejean, D. Franz, A. Hamdou, S. Kaassamani, D. Gauthier, R. Nicolas, G. Jargot et al., Enhanced extreme ultraviolet high-harmonic generation from chromium-doped magnesium oxide. Appl. Phys. Lett. 118(20), 201103 (2021)

    ADS  Google Scholar 

  47. S.D. Birajdar, V. Bhagwat, A. Shinde, K. Jadhav, Effect of \({Co^{2+}}\) ions on structural, morphological and optical properties of ZnO nanoparticles synthesized by sol-gel auto combustion method. Mater. Sci. Semicond. Process. 41, 441–449 (2016)

    Google Scholar 

  48. Y. Kim, S. Cooper, M. Klein, B. Jonker, Spectroscopic ellipsometry study of the diluted magnetic semiconductor system Zn (Mn, Fe, Co) Se. Phys. Rev. B 49(3), 1732 (1994)

    ADS  Google Scholar 

  49. O.V. Diachenko, A.S. Opanasiuk, D.I. Kurbatov, N.M. Opanasiuk, O. Kononov, H. Cheong, D. Nam Surface morphology, structural and optical properties of MgO films obtained by spray pyrolysis technique (2016)

  50. C. Janet, B. Viswanathan, R. Viswanath, T. Varadarajan, Characterization and photoluminescence properties of MgO microtubes synthesized from hydromagnesite flowers. J. Phys. Chem. C 111(28), 10267–10272 (2007)

    Google Scholar 

  51. A. Gibson, R. Haydock, J.P. LaFemina, Stability of vacancy defects in MgO: the role of charge neutrality. Phys. Rev. B 50(4), 2582 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge National Institute of Science Education and Research and DAE, India for supporting to carry out this work through the Project Number RIN-4001. The authors acknowledge the Institute of physics Bhubaneswar for proving stable beam for ion implantation. Sourav Bhakta thanks the scientific officer Mr. Ananda Raman for his help in installing required softwares and accessing the cluster facility (KONARK) at NISER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap K. Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakta, S., Sahoo, P.K. Tuning optical bandgap of crystalline MgO by MeV Co ion beam induced defects. Appl. Phys. A 128, 990 (2022). https://doi.org/10.1007/s00339-022-06100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06100-z

Keywords

Navigation