Skip to main content
Log in

On viscoelastic deformation of growing skin in reconstructive surgery

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Skin is a living organ which can grow in a specific situation. In some cases, a defect like a wound or congenital nevus can bother the patients. Accordingly, the defect needs to be repaired with adjacent skin, and the growth phenomenon will be necessary in these conditions. Some studies have been done to model the growth of skin; however, none of them considered the viscoelastic property which is an inherent characteristic of the skin. Therefore, the main goal of this paper is to develop a nonlinear viscoelastic formulation for growing skin. The formulation is derived in such a way that the pure growth phenomenon can be recovered when the effect of viscoelasticity is ignored. Moreover, to deal with highly nonlinear formulation, a nonlinear finite element formulation in Total Lagrangian framework is developed. Furthermore, implicit trapezoidal time integration method is employed for evolution equations obtained from viscoelastic and growth contributions. Finally, some examples are provided to investigate the performance of the developed formulation and the good results compared to those available in the literature are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.Z. Albanna, J.H. Holmes, Skin tissue engineering and regenerative medicine (Academic Press, 2016)

    Google Scholar 

  2. C. Griffiths, J. Barker, T. Bleiker, R. Chalmers, D. Creamer, Rook’s textbook of dermatology (Wiley-Blackwell, Oxford, 2016)

    Book  Google Scholar 

  3. R.J. Klebe, Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp. Cell. Res. 179, 362–373 (1988)

    Article  Google Scholar 

  4. J.G. Beauchene, M.M. Chambers, A.E. Peterson, P.G. Scott, Biochemical, biomechanical, and physical changes in the skin in an experimental animal model of the therapeutic tissue expansion. J. Surg. Res. 47, 507–514 (1989)

    Article  Google Scholar 

  5. A.B. Tepole, C.J. Ploch, J. Wong, A.K. Gosain, E. Kuhl, Growing skin: a computational model for skin expansion in reconstructive surgery. J. Mech. Phys. Solids. 59, 2177–2190 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. C.G. Neumann, The expansion of an area of skin by progressive distension of a subcutaneous balloon; use of the method for securing skin for subtotal reconstruction of the ear. Plast. Reconstr. Surg. 19, 124–130 (1957)

    Article  Google Scholar 

  7. K. Agrawal, S. Agrawal, Tissue regeneration during tissue expansion and choosing an expander. Indian J. Plast. Surg. 45, 7–15 (2012)

    Article  Google Scholar 

  8. T. Richter, J.H. Müller, U.D. Schwarz, R. Wepf, R. Wiesendanger, Investigation of the swelling of human skin cells in liquid media by tapping mode scanning force microscopy. Appl. Phys. A 72, S125–S128 (2001)

    Article  ADS  Google Scholar 

  9. M. Hollestein, A.E. Ehert, M. Itskov, E. Mazza, A novel experimental procedure based on pure shear testing of dermatome-cut samples applied to porcine skin. Biomech. Model. Mechanobiol. 10, 651–661 (2011)

    Article  Google Scholar 

  10. G.C. Charalambopoulou, T.A. Steriotis, T. Hauss, K.L. Stefanopoulos, A.K. Stubos, A neutron-diffraction study of the effect of hydration on stratum corneum structure. Appl. Phys. A 74, S1245–S1247 (2002)

    Article  ADS  Google Scholar 

  11. Y. Zhao, B. Feng, J. Lee, N. Lu, D.M. Pierce, A multi-layered computational model for wrinkling of human skin predicts aging effects. J. Mech. Behav. Biomed. Mater. 103, 103552 (2019)

    Article  Google Scholar 

  12. T.K. Tonge, L.S. Altan, L.M. Voo, T.D. Nguyen, Full-field bulge test for planar anisotropic tissues: part I-experimental methods applied to human skin tissue. Acta Biomater. 9, 5913–5925 (2013)

    Article  Google Scholar 

  13. L.K. Smalls, R. Wickett, M.O. Visscher, Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties. Skin Res. Technol. 12, 43–49 (2006)

    Article  Google Scholar 

  14. C. Pailler-Mattei, L. Laquieze, R. Debret, S. Tupin, G. Aimond, P. Sommer, H. Zahouani, Rheological behavior of reconstructed skin. J. Mech. Behav. Biomed. Mater. 37, 251–263 (2014)

    Article  Google Scholar 

  15. S.H. Kim, J.M. Suk, Y.I. Lee, J. Kim, J.H. Lee, Identification of skin aging biomarkers correlated with the biomechanical properties. Skin Res. Technol. 27, 940–947 (2021)

    Article  Google Scholar 

  16. N. Kumaraswamy, H. Khatam, G.P. Reece, M.C. Fingeret, M.K. Markey, K. Ravi-Chande, Mechanical response of human female breast skin under uniaxial stretching. J. Mech. Behav. Biomed. Mater. 74, 164–175 (2017)

    Article  Google Scholar 

  17. G.G. Barbarino, M. Jabareen, E. Mazza, Experimental and numerical study on the mechanical behavior of the superficial layers of the face. Skin Res. Technol. 17, 434–444 (2011)

    Article  Google Scholar 

  18. A.N. Kazerooni, A.R. Srinivasa, J.C. Criscione, A multinetwork inelastic model for the hysteretic response during cyclic loading of pig and rat skin. Int. J. Non-Linear Mech. 126, 103555 (2020)

    Article  Google Scholar 

  19. R.D. Jobanputra, C.J. Boyle, D. Dini, M.A. Masen, Modelling the effects of age-related morphological and mechanical skin changes on the stimulation of tactile mechanoreceptors. J. Mech. Behav. Biomed. Mater. 112, 104073 (2020)

    Article  Google Scholar 

  20. C. Flynn, A. Taberner, P. Nielsen, Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis. Biomech. Model. Mechanobiol. 10, 27–38 (2011)

    Article  Google Scholar 

  21. R.B. Groves, S.A. Coulman, J.C. Birchall, S.L. Evans, An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167–180 (2013)

    Article  Google Scholar 

  22. D.C. Pamplona, R.Q. Velloso, H.N. Radwanski, On skin expansion. J. Mech. Behav. Biomed. Mater. 29, 655–662 (2014)

    Article  Google Scholar 

  23. A. Delfino, N. Stergiopulos, J.E. Moore, J.J. Meister, Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30, 777–786 (1997)

    Article  Google Scholar 

  24. C. Guo, L. Yi, Y. Yu, J. Liu, Electrically induced reorganization phenomena of liquid metal film printed on biological skin. Appl. Phys. A 122, 1070 (2016)

    Article  ADS  Google Scholar 

  25. D. Remache, M. Caliez, M. Gratton, S. Dos Santos, The effects of cyclic tensile and stress-relaxation tests on porcine skin. J. Mech. Behav. Biomed. Mater. 77, 242–249 (2018)

    Article  Google Scholar 

  26. L. Socci, G. Rennati, F. Gervaso, P. Vena, An axisymmetric computational model of skin expansion and growth. Biomech. Model. Mechanobiol. 6, 177–188 (2007)

    Article  Google Scholar 

  27. A.B. Tepole, A.K. Gosain, E. Kuhl, Stretching skin: the physiological limit and beyond. Int. J. Non-Linear Mech. 47, 938–949 (2012)

    Article  Google Scholar 

  28. A.M. Zöllner, A.B. Tepole, A.K. Gosain, E. Kuhl, Growing skin: tissue expansion in pediatric forehead reconstruction. Biomech. Model. Mechanobiol. 11, 855–867 (2012)

    Article  Google Scholar 

  29. A.M. Zöllner, A.B. Tepole, E. Kuhl, On the biomechanics and mechanobiology of growing skin. J. Theor. Biol. 297, 166–175 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A.B. Tepole, A.K. Gosain, E. Kuhl, Computational modeling of skin: using stress profiles as predictor for tissue necrosis in reconstructive surgery. Comput. Struct. 143, 32–39 (2014)

    Article  Google Scholar 

  31. G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. K.J. Bathe, Finite element procedures (Prentice Hall, 1996)

    MATH  Google Scholar 

  33. T.J. Hughes, The finite element method: linear static and dynamic finite element analysis (Courier Corporation, 2012)

    Google Scholar 

  34. T. Rabczuk, T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Methods in Eng. 61, 2316–2343 (2004)

    Article  MATH  Google Scholar 

  35. V.P. Nguyen, T. Rabczuk, S. Bordas, M. Duflot, Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Rabczuk, J.-H. Song, X. Zhuang, C. Anitescu, Extended finite element and meshfree methods (Academic Press, 2019)

    Google Scholar 

  37. N. Nguyen-Thanh, H. Nguyen-Xuan, S.P.A. Bordas, T. Rabczuk, Isogeometric analysis using polynomial splines over hierarchical T meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Engrg. 200, 1892–1908 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. G. Xu, M. Li, B. Mourrain, T. Rabczuk, J. Xu, S. Bordas, Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization. Comput. Methods Appl. Mech. Eng. 328, 175–200 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. V.P. Nguyen, C. Anitescu, S.P.A. Bordas, T. Rabczuk, Isogeometric analysis: an overview and computer implementation aspects. Math. Comput. Simul. 117, 89–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. G.D. Huynh, X. Zhuang, H.G. Bui, G. Meschke, H. Nguyen-Xuan, Elasto-plastic large deformation analysis of multi-patch thin shells by isogeometric approach. Finite Elem. Anal. Des. 173, 103389 (2020)

    Article  MathSciNet  Google Scholar 

  41. V.M. Nguyen-Thanh, X. Zhuang, T. Rabczuk, A deep energy method for finite deformation hyperelasticity. Eur. J. Mech. A Solids 80, 103874 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, T. Rabczuk, X. Zhuang, An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput. Methods Appl Mech Engrg 362, 112790 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. V.M. Nguyen-Thanha, C. Anitescu, N. Alajlan, T. Rabczuk, X. Zhuang, Parametric deep energy approach for elasticity accounting for strain gradient effects. Comput. Methods Appl. Mech. Engrg. 386, 114096 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Y.C. Fung, Biomechanics: mechanical properties of living tissues (Springer, New York, 1981)

    Book  Google Scholar 

  45. A. Lion, On the large deformation behaviour of reinforced rubber at different temperatures. J. Mech. Phys. Solids. 45, 1805–1834 (1997)

    Article  ADS  Google Scholar 

  46. P. Haupt, K. Sedlan, Viscoplasticity of elastomeric materials. Experimental facts and constitutive modeling. Arch. Appl. Mech. 71, 89–109 (2001)

    Article  ADS  MATH  Google Scholar 

  47. E.K. Rodriguez, A. Hoger, A.D. McCulloch, Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  48. Y. Lanir, Y.C. Fung, Two-dimensional mechanical properties of rabbit skin. II. Experimental results. J. Biomech. 7, 171–182 (1974)

    Article  Google Scholar 

  49. M. Rausch, E. Kuhl, On the mechanics of growing thin biological membranes. J. Mech. Phys. Solids. 63, 128–140 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. R. Rivera, J. LoGiudice, A.K. Gosain, Tissue expansion in pediatric patients. Clin. Plast. Surg. 32, 35–44 (2005)

    Article  Google Scholar 

  51. A.K. Gosain, C.G. Zochowski, W. Cortes, Refinements of tissue expansion for pediatric forehead reconstruction: a 13-year experience. Plast. Reconstr. Surg. 124, 1559–1570 (2009)

    Article  Google Scholar 

  52. A. Lubarda, A. Hoger, On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664 (2002)

    Article  MATH  Google Scholar 

  53. H. Xiao, O.T. Bruhns, A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. P. Wriggers, Nonlinear finite element methods (Springer-Verlag, 2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Firouzi.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouzi, N., Dadgar-Rad, F. & Falahatgar, S.R. On viscoelastic deformation of growing skin in reconstructive surgery. Appl. Phys. A 128, 931 (2022). https://doi.org/10.1007/s00339-022-06047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06047-1

Keywords

Navigation