Skip to main content
Log in

Laser-assisted fabrication of deterministic lateral displacement structures on P20 die steel masters for microfluidic particle separation

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Micro features play a vital role in microfluidic devices as they induce laminar or patterned flow. Laser micromachining is an evolving technique in the fabrication of such micro features with various complicated shapes and sizes on metallic and polymeric surfaces. A variety of shapes and sizes are utilized in biomedical applications, such as bio-implants, bioreactors and particle separation modules. In this research work, the authors have attempted to fabricate a passive device for particle separation that works on the principle of Deterministic Lateral Displacement (DLD). Displacement of the particles in the microfluidic regime separates the particles in a size range of 5–17 µm. This separation is accomplished using appropriately placed microposts which act as diversions for the flow lines, bifurcating them into primary and secondary branches. The authors have fabricated these features using a two-step process: fabrication of P20 die steel masters using 1030 nm Ultrashort Pulsed Laser (Yb) and transferring the features to poly dimethyl siloxane (PDMS)-based polymeric devices using soft fabrication. The circular posts of diameter 40 ± 2 µm and triangular features inscribed in a circle of diameter 40 ± 2 µm are arranged in three configurations with varying row shift fractions (ɛ), namely 0.45, 0.57 and 0.70, resulting in a tilt angle (α) of 25 ± 1°, 30 ± 1° and 35 ± 1°. The effect of the tilt angles on the pressure and velocity gradients on the fluid flow and the particle deformation is studied. The microscopy of the fabricated steel masters and PDMS devices is carried out to characterize the micro-features for their shape, size and the heat-affected zones. 3D profilometry is carried out to determine the quality of the micro-holes. Polymeric devices are further fabricated using die steel masters by soft fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LASER:

Light amplification by stimulated emission of radiation

D:

Post diameter

G:

Gap size

α:

Tilt angle

PDMS:

Poly dimethyl siloxane

DLD:

Deterministic lateral displacement

λx, λy :

Array pitch

Δλ:

Row shift

ε:

Row shift fraction

LOC:

Lab on a chip

References

  1. A. Asgar, S. Bhagat, H. Bow, H.W. Hou, S.J. Tan, J. Han, C.T. Lim, Med Biol Eng Comput 48, 999–1014 (2010). https://doi.org/10.1007/s11517-010-0611-4

    Article  Google Scholar 

  2. C. Szydzik, K. Khoshmanesh, A. Mitchell, C. Karnutsch, Biomicrofluidics 9(6), 064120 (2015). https://doi.org/10.1063/1.4938391

    Article  Google Scholar 

  3. J.P. Beech, P. Jonsson, J.O. Tegenfeldt, Lab Chip 9, 2698–2706 (2009). https://doi.org/10.1039/B823275J

    Article  Google Scholar 

  4. S. Ahmed, J.W. Noh, J. Hoyland, R.O. Hansen, H. Erdmann, H.G. Rubahn, Appl A Phys (2016). https://doi.org/10.1063/1.2790485

    Article  Google Scholar 

  5. A. Ayoib, U. Hashim, C.B.S. Gopinath, V. Thivina, M.K. Arshad, Appl Phys A. (2020). https://doi.org/10.1007/s00339-020-3337-7

    Article  Google Scholar 

  6. D. Venugopal, N. Kasani, Y. Manjunath, G. Li, J.T. Kaifi, J.W. Kwon, Sci Rep. 11, 16685 (2021). https://doi.org/10.1038/s41598-021-94123-6

    Article  ADS  Google Scholar 

  7. N. Li, D.T. Kamei, C.M. Ho, Proceedings (2007). https://doi.org/10.1109/NEMS.2007.352171

    Article  Google Scholar 

  8. J.P. Beech, S.H. Holm, K. Adolfsson, J.O. Tegenfeldt, Lab Chip 12(6), 1048 (2012). https://doi.org/10.1039/c2lc21083e

    Article  Google Scholar 

  9. N. Xiang, J. Wang, Q. Li, Y. Han, D. Huang, Z. Ni, Anal. Chem. 91, 10328–10334 (2019). https://doi.org/10.1021/acs.analchem.9b02863

    Article  Google Scholar 

  10. Z. Liu, F. Huang, J. Du, W. Shu, H. Feng, X. Xu, Y. Chen, Biomicrofluidics 7, 011801 (2013). https://doi.org/10.1063/1.4774308

    Article  Google Scholar 

  11. A. Ng, S. Peng, A.M. Xu, W.J. Noh, K. Guo, M.T. Bethne, W. Chour, J. Choi, D. Baltimore, J. Heath, Lab Chip 19, 3011–3021 (2019). https://doi.org/10.1038/s41592-018-0305-7

    Article  Google Scholar 

  12. A. Kühnlein, Master Thesis (Lund University, Lund, 2016)

    Google Scholar 

  13. L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Science 304(5673), 987–990 (2004). https://doi.org/10.1126/science.1094567

    Article  ADS  Google Scholar 

  14. D.W. Inglis, Appl. Phys. Lett. 94(1), 013510 (2009). https://doi.org/10.1063/1.3068750

    Article  MathSciNet  ADS  Google Scholar 

  15. Davis. J. A., Doctoral Thesis, Princeton Institute for the Science and Technology of Materials (2008)

  16. J. McGrath, M. Jimenez, H. Bridle, Lab Chip 14, 4139 (2014). https://doi.org/10.1039/C4LC00939H

    Article  Google Scholar 

  17. W. Liang, R.H. Austin, J.C. Sturm, Lab Chip 20, 3461–3467 (2020). https://doi.org/10.1039/D0LC00570C

    Article  Google Scholar 

  18. B. Rezaei, M.M. Zand, R. Javidi, J Chromatogr A 1649, 462216 (2021). https://doi.org/10.1016/j.chroma.2021.462216

    Article  Google Scholar 

  19. P. Sahoo, K. Patra, T. Szalay, A. Dyakonov, Int J Adv Manuf Technol 106, 4675–4691 (2020). https://doi.org/10.1007/s00170-020-04926-6

    Article  Google Scholar 

  20. X. Chen, J. Zhao, Y. Li, S. Han, Q. Cao, A. Li, Int J Adv Manuf Technol 59, 885–898 (2012). https://doi.org/10.1007/s00170-016-9712-z

    Article  Google Scholar 

  21. C. Liao, W. Anderson, F. Antaw, M. Trau, ACS Appl. Mater. Interfaces 10, 4315–4323 (2018). https://doi.org/10.1021/acsami.7b18029

    Article  Google Scholar 

  22. D.K. Lee, J.Y. Kwon, Y.H. Cho, Appl. Phys. A 125, 291 (2019). https://doi.org/10.1007/s00339-019-2600-2

    Article  ADS  Google Scholar 

  23. A.K. Au, N. Bhattacharjee, L.F. Horowitz, T.C. Chang, A. Folch, 3D printed microfluidic automation. Lab Chip. 15(8), 1934–1941 (2015). https://doi.org/10.1039/c5lc00126a

    Article  Google Scholar 

  24. A. Bonyár, H. Sántha, B. Ring, M. Varga, J. Gábor Kovács, G. Harsányi, 3D rapid prototyping technology (RPT) as a powerful tool in microfluidic development. Procedia Eng 5, 291–294 (2010). https://doi.org/10.1016/j.proeng.2010.09.105

    Article  Google Scholar 

  25. A. Feuer, R. Weber, R. Feuer, D. Brinkmeier, T. Graf, Appl. Phys. A 127, 665 (2021). https://doi.org/10.1007/s00339-021-04818-w

    Article  ADS  Google Scholar 

  26. D. Andrijec, D. Andriukaitis, R. Vargalis, T. Baravykas, T. Drevinskas, O. Kornysova, A. Butkue, V. Kaskoniene, M. Stankevicius, H. Gricius, A. Jagelavicius, A. Maruska, L. Jonusauskar, Appl. Phys. A 127, 781 (2021). https://doi.org/10.1007/s00339-021-04872-4

    Article  ADS  Google Scholar 

Download references

Acknowledgements

IITM Innovative projects, ICSR has financially supported this work, and the authors are thankful to the funding agency. The authors are also grateful to the Manufacturing Engineering Section, Department of Mechanical Engineering and Center of Excellence for Advanced Laser Material Processing (p-CALMP) for providing the facilities used in the present studies. The authors also acknowledge the DST-FIST (SR/FST/ET3-059/2013) for providing the Scanning electron facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Samuel.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

The research work is a part of Patent Application No: 202241004133 filed on 25/01/2022 under the Indian Patents Act 1970.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15080 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, P., Samuel, G.L. Laser-assisted fabrication of deterministic lateral displacement structures on P20 die steel masters for microfluidic particle separation. Appl. Phys. A 128, 878 (2022). https://doi.org/10.1007/s00339-022-06010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06010-0

Keywords

Navigation