Skip to main content
Log in

Self-growth of silver tree-like fractal structures with different geometries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silver tree-like fractal structures are self-grown, where needle growths and branching are iterated, via rapid reduction of silver ions in a solution. Many self-similar frameworks exist at different scales in the whole structure, and geometry is characterized by a fractal dimension. Here, we perform a control of the fractal geometry by facile growth engineering related to the viscosity of the solvent, with acetone and ethanol, on the silver tree-like structure. The geometry changed from needle leaf-like to broadleaf-like structure as the viscosity increased, which resulted in the difference in the fractal dimensions ranging from 1.743 to 1.812, at 303 K. The silver fractal structures exhibited optical responses over a wide wavelength range from 400 to 900 nm, which was also visualized by the dark-field observations with an optical microscope. We demonstrated surface-enhanced Raman scattering (SERS) measurements of para-aminothiophenol at 532, 633, and 785 nm on the silver tree-like fractal structures with three types of different fractal geometries. Compared with the common SERS substrates, the merit of using dendrite structures is the availability of multiple laser wavelengths for SERS excitation and detection on the same sample, with keeping significant enhancement effect. This feature also allows us direct observation of plasmon-mediated chemical transformations of molecules through multi-color excitation SERS measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31 (2008)

    Article  ADS  Google Scholar 

  2. J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Self-assembled plasmonic nanoparticle clusters. Science 328, 1135 (2010)

    Article  ADS  Google Scholar 

  3. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday. Soc. 11, 55 (1951)

    Article  Google Scholar 

  4. A. Henglein, M. Giersig, Formation of colloidal silver nanoparticles: capping action of citrate. J. Phys. Chem. B 103, 9533 (1999)

    Article  Google Scholar 

  5. M.B.I. van der Zande, L. Pages, R.A.M. Hikmet, A.V. Blaaderen, Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films. J. Phys. Chem. B 103, 5761 (1999)

    Article  Google Scholar 

  6. Y. Niidome, K. Nishioka, H. Kawasaki, S. Yamada, Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem. Commun. 3, 2376 (2003)

    Article  Google Scholar 

  7. R. Jin, Y.C. Cao, E. Hao, G.S. Métraux, G.S. Schatz, C.A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487 (2003)

    Article  ADS  Google Scholar 

  8. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)

    Article  ADS  Google Scholar 

  9. A. Tao, P. Sinsermsuksakul, P. Yang, Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotech. 2, 435 (2007)

    Article  ADS  Google Scholar 

  10. R. Kagawa, N. Takeyasu, T. Kaneta, Y. Takemoto, Oil-in-water emulsion as fabrication platform for uniform plasmon-controlled two-dimensional metallic nanoparticle array. Appl. Phys. Express 9, 075003 (2016)

    Article  ADS  Google Scholar 

  11. S. Ikegami, K. Yamaguchi, T. Tanaka, N. Takeyasu, T. Kaneta, Hydrophobic assembly of gold nanoparticles into plasmonic oligomers with Langmuir–Blodgett film. Jpn. J. Appl. Phys. 57, 110305 (2018)

    Article  Google Scholar 

  12. U. Nakaya, Snow crystals: natural and artificial (Harvard University Press, Harvard, 1954)

    Book  Google Scholar 

  13. A. Papapetrou, Untersuchungen über dendritisches Wachstum von Kristallen. Z. Kristallographie 92, 89 (1935)

    Google Scholar 

  14. G.P. Ivantsov, Temperaturnuye Pole Vokrug Sharoobraznogo Tsilindricheskogo i Igloobrazno go Kristalla Rastushchego v Pereokhlazhdennom Rasplave. Dokl. Akad. Nauk. SSSR 58, 567 (1947)

    Google Scholar 

  15. W.W. Mullins, R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323 (1963)

    Article  ADS  Google Scholar 

  16. J.S. Langer, H.M. Krumbhaar, Theory of dendritic growth—I elements of a stability analysis. Acta. Metall. 26, 1681 (1978)

    Article  Google Scholar 

  17. J.S. Langer, H.M. Krumbhaar, Theory of dendritic growth—II. Instabilities in the limit of vanishing surface tension. Acta Metall. 26, 1689 (1978)

    Article  Google Scholar 

  18. J.S. Langer, H.M. Krumbhaar, Theory of dendritic growth—III Effects of surface tension. Acta. Metall. 26, 1697 (1978)

    Article  Google Scholar 

  19. R.C. Brower, D.A. Kessler, J. Koplik, H. Levine, Geometrical approach to moving-interface dynamics. Phys. Rev. Lett. 51, 1111 (1983)

    Article  ADS  Google Scholar 

  20. D.A. Kessler, J. Koplik, H. Levine, Steady-state dendritic crystal growth. Phys. Rev. A 33, 3352 (1986)

    Article  ADS  Google Scholar 

  21. E. Ben-Jacob, N. Goldenfeld, J.S. Langer, G. Schön, Dynamics of interfacial pattern formation. Phys. Rev. Lett. 51, 1930 (1983)

    Article  ADS  Google Scholar 

  22. A. Barbieri, D.C. Hong, J.S. Langer, Velocity selection in the symmetric model of dendritic crystal growth. Phys. Rev. A 35, 1802 (1987)

    Article  ADS  Google Scholar 

  23. H. Honjo, S. Ohta, Y. Sawada, New experimental findings in two-dimensional dendritic crystal growth. Phys. Rev. Lett. 55, 841 (1985)

    Article  ADS  Google Scholar 

  24. R. Pieters, J.S. Langer, Noise-driven sidebranching in the boundary-layer model of dendritic solidification. Phys. Rev. Lett. 56, 1948 (1986)

    Article  ADS  Google Scholar 

  25. A. Dougherty, P.D. Kaplan, J.P. Gollub, Development of side branching in dendritic crystal growth. Phys. Rev. Lett. 58, 1652 (1987)

    Article  ADS  Google Scholar 

  26. N. Takeyasu, N. Taguchi, N. Nishimura, B.H. Chen, S. Kawata, Plasmonic growth of patterned metamaterials with fractal geometry. APL Photonics 1, 050801 (2016)

    Article  ADS  Google Scholar 

  27. N. Taguchi, N. Takeyasu, S. Kawata, Extraction of three-dimensional silver nanostructures with supercritical fluid. Appl. Phys. Express 11, 025201 (2018)

    Article  ADS  Google Scholar 

  28. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636 (1967)

    Article  ADS  Google Scholar 

  29. V.A. Markel, L.S. Muratov, M.I. Stockman, T.F. George, Theory and numerical simulation of optical properties of fractal clusters. Phys. Rev. B 43, 8183 (1991)

    Article  ADS  Google Scholar 

  30. M.I. Stockman, Chaos and spatial correlations for dipolar eigenproblems. Phys. Rev. Lett. 79, 4562 (1997)

    Article  ADS  Google Scholar 

  31. V.M. Shalaev, M.I. Stockman, Fractals: optical susceptibility and giant Raman scattering. Z. Phys. D 10, 71 (1988)

    Article  ADS  Google Scholar 

  32. H.-W. Chen, C.-H. Tu, Densities, viscosities, and refractive indices for binary and ternary mixtures of acetone, ethanol, and 2,2,4-trimethylpentane. J. Chem. Eng. Data 50, 1262 (2005)

    Article  ADS  Google Scholar 

  33. A.I. Rusanov, S.A. Levichev, V.Y. Tyushin, Composition of the surface layer in the n-hexane-acetone system. Vestn. Leningr. Univ. 2, 121–127 (1966)

    Google Scholar 

  34. G. Vazquez, E. Alvarez, J.M. Navaza, Surface tension of alcohol water + water from 20 to 50 degreeC. J Chem. Eng. Data 40, 611 (1995)

    Article  Google Scholar 

  35. Y.-F. Huang, H.-P. Zhu, G.-K. Liu, D.-Y. Wu, B. Ren, Z.-Q. Tian, When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244 (2010)

    Article  Google Scholar 

  36. W. Xie, B. Walkenfort, Schlücker, Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 135, 1657 (2013)

    Article  Google Scholar 

  37. N. Takeyasu, R. Kagawa, K. Sakata, T. Kaneta, Laser power threshold of chemical transformation on highly uniform plasmonic and catalytic nanosurface. J. Phys. Chem. C 120, 12163 (2016)

    Article  Google Scholar 

  38. Y. Takeuchi, A. Violas, T. Fujita, Y. Kumamoto, M. Modreanu, T. Tanaka, K. Fujita, N. Takeyasu, Hot carrier generation in two-dimensional silver nanoparticle arrays at different excitation wavelengths under on-resonant conditions. J. Phys. Chem. C 124, 13936 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Takeyasu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest directly relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogami, K., Kishimoto, K., Hashimoto, Y. et al. Self-growth of silver tree-like fractal structures with different geometries. Appl. Phys. A 128, 860 (2022). https://doi.org/10.1007/s00339-022-05976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05976-1

Keywords

Navigation