Skip to main content

Advertisement

Log in

Physical, elastic-mechanical and radiation shielding properties of antimony borate–lithium in the form B2O3-CaO-Li2O-Sb2O3: Experimental, theoretical and simulation approaches

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Role of Sb2O3 on physical, elastic-mechanical, and gamma-ray protection ability of (70-x)B2O3-15CaO-15Li2O-xSb2O3: x = 0, 1, 3, 5, and 8 mol% glass systems was investigated through this report. The density was improved from 2.410 to 2.780 g.cm3 associated with a simultaneous increase in the molar volume from 25.575 to 28.556 cm3/mol as the mol% of Sb increased in the samples. In addition, the oxygen packing density (OPD) and oxygen molar volume (OMV) were decreased and increased, respectively, as a direct response to this increase in Sb mol%. The Gibbs free energy increases from 32.22 to 33.796 kJ/cm3, while Young’s modulus decreases from 43.17 to 41.23 GPa. Therefore, Poisson’s ratio (σ) values were varied from 0.4069 to 0.4153. Vicker’s hardness was improved by enhancing Sb2O3 concentration. The observed trend of the mass attenuation coefficient (MAC) parameter was followed as: MACSb0 < MAC Sb1 < MAC Sb3 < MAC Sb5 < MAC Sb8 with values in the range of 4.176–0.018, 5.907–0.019, 9.032–0.021, 11.775–0.0227, 15.315–0.0245 cm2/g for samples encoded as Sb0-Sb8, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.P. Møller, T.A. Mousseau, The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol. Rev. 88(1), 226–254 (2013)

    Article  Google Scholar 

  2. N.J. AbuAlRoos, N.A.B. Amin, R. Zainon, Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review. Rad. Phys. Chem. 165, 108439 (2019)

    Article  Google Scholar 

  3. C.-L. Hsiao, K.-H. Wu, K.-S. Wan, Effects of environmental lead exposure on T-helper cell-specific cytokines in children. J. Immunotoxicol. 8(4), 284–287 (2011)

    Article  Google Scholar 

  4. Y.B. Saddeek, S.A.M. Issa, T. Alharbi, K. Aly, M. Ahmad, H.O. Tekin, Mechanical and nuclear shielding properties of sodium cadmium borate glasses: Impact of cadmium oxide additive. Ceram. Int. 46, 2661–2669 (2020)

    Article  Google Scholar 

  5. Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, R. El-Mallawany, E. Ilik, G. Kilic, FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses. J. Mater. Sci. Mater. Electron. 31, 9099–9113 (2020)

    Article  Google Scholar 

  6. Y.S. Rammah, F.I. El-Agawany, N. Elkhoshkhany, F. Elmasry, M. Reben, E. Iwona Grelowska, Yousef, Physical, optical, thermal, and gamma-ray shielding features of fluorotellurite lithiumniobate glasses:TeO2-LiNbO3-BaO-BaF2-La2O3. J Mater Sci Mater Electron 32, 3743–3752 (2021)

    Article  Google Scholar 

  7. M.S. Shams, Y.S. Rammah, F.I. El-Agawany, R.A. Elsad, Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5–Li2O–ZnO–CdO glasses. J Mater Sci: Mater Electron 32, 1877–1887 (2021)

    Google Scholar 

  8. E. Kavaz, H.O. Tekin, G. Kilic, G. Susoy, Newly developed Zinc-Tellurite glass system: an experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. J. Non-Cryst. Solids 544, 120169 (2020)

    Article  Google Scholar 

  9. E. Ilik, E. Kavaz, G. Kilic, S.A.M. Issa, H.M.H. Zakaly, H.O. Tekin, A closer-look on Copper(II) oxide reinforced Calcium-Borate glasses: Fabrication and multiple experimental assessment on optical, structural, physical, and experimental neutron/gamma shielding properties. Ceram. Int. 48, 6780–6791 (2022)

    Article  Google Scholar 

  10. G. ALMisned, H.M.H. Zakaly, S.A.M. Issa, A. Ene, G. Kilic, O. Bawazeer, A. Almatar, D. Shamsi, E. Rabaa, Z. Sideig, H.O. Tekin, H.O. Gamma-Ray, Protection properties of bismuth-silicate glasses against some diagnostic nuclear medicine radioisotopes: a comprehensive study. Materials. 14, 6668 (2021)

    Article  ADS  Google Scholar 

  11. H.O. Tekin, S.A.M. Issa, G. Kilic, H.M.H. Zakaly, A. Badawi, G. Bilal, H.A.A. Sidek, K.A. Matori, M.H.M. Zaid, Cadmium oxide reinforced 46V2O5–46P2O5–(8–x)B2O3–xCdO semiconducting oxide glasses and resistance behaviors against ionizing gamma rays. J Mater Res Technol 13, 2336–2349 (2021)

    Article  Google Scholar 

  12. G. Kilic, F.IEl. Agawany, B. OzenIlik, K.A. Mahmoud, E. Ilik, Y.S. Rammah, Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: Fabrication, physical, structural characterization, and radiation shielding efficacy. Opt Mater 112, 110757 (2021)

    Article  Google Scholar 

  13. G. Kilic, E. Ilik, K.A. Mahmoud, F.IEl. Agawany, S. Alomairy, Y.S. Rammah, Appl Phy A 127, 265 (2021)

    Article  ADS  Google Scholar 

  14. G. ALMisned, G. Bilal, Y.S. Rammah, S.A.M. Issa, G. Kilic, H.M.H. Zakaly, H.O. Tekin, J Electron Mater 50, 6844–6853 (2021)

    Article  ADS  Google Scholar 

  15. H. Doweidar, Structural study of density and refractive index of Sb2O3–B2O3 glasses. J. Non-Cryst. Solids 429, 112–117 (2015)

    Article  ADS  Google Scholar 

  16. G. Kilic, U.G. Issever, E. Ilik, Synthesis, characterization and crystalline phase studies of TeO2–Ta2O5–ZnO/ZnF2 oxyfluoride semiconducting glasses. J. Non-Cryst. Solids 527, 119747 (2020)

    Article  Google Scholar 

  17. U.G. Issever, G. Kilic, E. Ilik, The Impact of CuO on physical, structural, optical and thermal properties of dark VPB semiconducting glasses. Opt. Mater. 116, 111084 (2021)

    Article  Google Scholar 

  18. F.H. El-Batal, E.M. Khalil, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides. SILICON 2(1), 41–47 (2010)

    Article  Google Scholar 

  19. W.I. Mortada, I.M.M. Kenawy, A.M. Abdelghany, A.M. Ismail, A.F. Donia, K.A. Nabieh, Determination of Cu2+, Zn2+ and Pb2+ in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell. Mater. Sci. Eng., C 52, 288–296 (2015)

    Article  Google Scholar 

  20. A.H. Hammad, A.M. Abdelghany, Optical and structural investigations of zinc phosphate glasses containing vanadium ions. J. Non-Cryst. Solids 433, 14–19 (2016)

    Article  ADS  Google Scholar 

  21. A.M. Abdelghany, Y.S. Rammah, Transparent alumino lithium borate glass-ceramics: synthesis, structure and gamma-ray shielding attitude. J. Inorg. Organomet. Polym Mater. 31, 2560–2568 (2021)

    Article  Google Scholar 

  22. M.H. Misbah, A.M. Abdelghany, F.I. El-Agawany, Y.S. Rammah, R. El-Mallawany, On Y2O3·Li2O·Al2O3·B2O3 glasses: synthesis, structure, physical, optical characteristics and gamma-ray shielding behavior. J Mater Sci: Mater Electron 32, 16242–16254 (2021)

    Google Scholar 

  23. H. Doweidar, K. El-Egili, R. Ramadan, M. Al-Zaibani, Structural investigation and properties of Sb2O3–PbO–B2O3 glasses. J. Non-Cryst. Solids 497, 93–101 (2018)

    Article  ADS  Google Scholar 

  24. T. Honma, R. Sato, Y. Benino, T. Komatsu, V. Dimitrov, Electronic polarizability, optical basicity and XPS spectra of Sb2O3-B2O3 glasses. J. Non-Cryst. Solids 272, 1–13 (2000)

    Article  ADS  Google Scholar 

  25. ANSI/ANS-6.4.3 (W2001), Geometric Progression Gamma-Ray Buildup Factor Coefficients, American Nuclear Society, La Grange Park, Illinois. (1991).

  26. MJ Berger, JH Hubbell, nd XCOM: Photon Cross-Sections Database, Web Version 1.2.

  27. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  28. K.S. Mann, S.S. Mann, Development of an online-platform for gamma-ray shielding calculations and investigations. Ann Nuclear Energy 150, 107845 (2021)

    Article  Google Scholar 

  29. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximation of gamma ray buildup factors Nucl. Sci. Eng. 94, 24–28 (1986)

    Google Scholar 

  30. A.B. Chilton, J.K. Shultis, R. Faw, Principle of Radiation Shielding, 1st edn. (Prentic-Halle, Englewood Cliffs, New Jersey, 1984)

    Google Scholar 

  31. Y. Harima, An approximation of gamma buildup factors by modified geometrical progression Nucl. Sci. Eng. 83, 299–309 (1983)

    Google Scholar 

  32. M.F. Kaplan, Concrete Radiation Shielding (John Wiley and Sons, New York, USA, 1989)

    Google Scholar 

  33. J. Wood, Computational Methods in Reactor Shielding (Pergamon Press, Inc., New York, USA, 1982)

    Google Scholar 

  34. S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis, H. Araujo et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  35. A. Makishima, J.D. Mackenzie, Direct calculation of young’s modulus of glass. J. Non-Cryst. Solids 12(1), 35–45 (1973)

    Article  ADS  Google Scholar 

  36. S. Inaba, S. Fujino, K. Morinaga, Young’s modulus and compositional parameters of oxide glasses. J. Am. Ceram. Soc. 82(12), 3501–3507 (1999)

    Article  Google Scholar 

  37. A.F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, 1984). (0-19-855370-6)

    Google Scholar 

  38. G. Ferlat, T. Charpentier, A.P. Seitsonen, A. Takada, M. Lazzeri, L. Cormier, G. Calas, F. Mauri, Boroxol rings in liquid and vitreous B2O3 from first principles. Phys. Rev. Lett. 101(6), 065504 (2008)

    Article  ADS  Google Scholar 

  39. O.L.G. Alderman, G. Ferlat, A. Baroni, M. Salanne, M. Micoulaut, C.J. Benmore, A. Lin, A. Tamalonis, J.K.R. Weber, Liquid B2O3 up to 1700K: X-ray diffraction and boroxol ring dissolution. J. Phys.: Condens. Matter 27(45), 455104 (2015)

    ADS  Google Scholar 

  40. G.A. Lawrance, Introduction to Coordination Chemistry (John Wiley & Sons, Ltd, 2009)

    Google Scholar 

  41. M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 1197, 656–665 (2019)

    Article  ADS  Google Scholar 

  42. A.S. Abouhaswa, I.O. Olarinoye, N.V. Kudrevatykh, M. Emad Ahmed, Y.S. Rammah, Bi2O3 reinforced B2O3 + Sb2O3 + Li2O: composition, physical, linear optical characteristics, and photon attenuation capacity. J. Mater. Sci 32, 12439–12452 (2021)

    Google Scholar 

  43. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceram. Int. 46, 6136–6140 (2020)

    Article  Google Scholar 

  44. Z. Khattari, M.S. Al-Buriahi, Monte Carlo simulations and Phy-X/PSD study of radiation shielding effectiveness and elastic properties of barium zinc aluminoborosilicate glasses. Radiat. Phys. Chem. 195, 110091 (2022)

    Article  Google Scholar 

  45. A. Yadav, M.S. Dahiya, A. Hooda, Prem Chand, S Khasa, Structural influence of mixed transition metal ions on lithium bismuth borate glasses. Solid State Sci 70, 54–65 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah Bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R60), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia. Z.Y. Khattari acknowledges the financial support from Hashemite University.

Funding

Princess Nourah Bint Abdulrahman University, PNURSP2022R60, Norah A. M. Alsaif

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to conceptualization, methodology, software, validation, investigation, data curation, writing—review and editing, visualization.

Corresponding authors

Correspondence to Z. Y. Khattari or Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattari, Z.Y., Alsaif, N.A.M., Rammah, Y.S. et al. Physical, elastic-mechanical and radiation shielding properties of antimony borate–lithium in the form B2O3-CaO-Li2O-Sb2O3: Experimental, theoretical and simulation approaches. Appl. Phys. A 128, 796 (2022). https://doi.org/10.1007/s00339-022-05949-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05949-4

Keywords

Navigation