Skip to main content
Log in

Synthesis and application of triphenylamine-based aldehydes as photo-initiators for multi-photon lithography

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Three new triphenylamine derivatives bearing formyl groups were synthesized and tested for their suitability as photo-initiators for multi-photon lithography. The efficiency of the photo-polymerization was tested by two different setups and for a variety of applications. Based on their broad fabrication window, the well-defined 3D prints in the sub-micron range (resolution and aspect ratio), the solubility, we demonstrate these photo-initiators are a viable alternative to standard photo-initiators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Skliutas et al., Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 10(4), 1211–1242 (2021). https://doi.org/10.1515/NANOPH-2020-0551

    Article  Google Scholar 

  2. B.H. Cumpston et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398(6722), 51–54 (1999). https://doi.org/10.1038/17989

    Article  ADS  Google Scholar 

  3. A. Bertoncini, C. Liberale, C. Liberale, 3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices. Opt. 7(11), 1487–1494 (2020). https://doi.org/10.1364/OPTICA.397281

    Article  ADS  Google Scholar 

  4. A. Camposeo, L. Persano, M. Farsari, D. Pisignano, Additive manufacturing: applications and directions in photonics and optoelectronics. Adv. Opt. Mater. 7(1), 1800419 (2019). https://doi.org/10.1002/ADOM.201800419

    Article  Google Scholar 

  5. Z. Vangelatos, C. Li, C. Grigoropoulos, K. Komvopoulos, Comparison of the mechanical performance of architected three-dimensional intertwined lattices at the macro/microscale. Extrem. Mech. Lett. (2020). https://doi.org/10.1016/J.EML.2020.100930

    Article  Google Scholar 

  6. A. Ovsianikov, B. Chichkov, J. Serbin, Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt. Express 12(21), 5221–5228 (2004). https://doi.org/10.1364/OPEX.12.005221

    Article  ADS  Google Scholar 

  7. L. Kelemen, E. Lepera, B. Horváth, P. Ormos, R. Osellame, R. Martínez Vázquez, Direct writing of optical microresonators in a lab-on-a-chip for label-free biosensing. Lab Chip 19(11), 1985–1990 (2019). https://doi.org/10.1039/C9LC00174C

    Article  Google Scholar 

  8. P. Danilevicius et al., Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement. Biointerphases 10(2), 021011 (2015). https://doi.org/10.1116/1.4922646

    Article  Google Scholar 

  9. A. Doraiswamy et al., Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater. 2(3), 267–275 (2006). https://doi.org/10.1016/J.ACTBIO.2006.01.004

    Article  Google Scholar 

  10. G. Flamourakis et al., Laser-made 3D auxetic metamaterial scaffolds for tissue engineering applications. Macromol. Mater. Eng. 305(7), 2000238 (2020). https://doi.org/10.1002/MAME.202000238

    Article  Google Scholar 

  11. Z. Vangelatos, C. Wang, Z. Ma, C.P. Grigoropoulos, Architected mechanical designs in tissue engineering. MRS Commun. 10(3), 379–390 (2020). https://doi.org/10.1557/mrc.2020.60

    Article  Google Scholar 

  12. H.B. Sun, S. Kawata, Two-photon photopolymerization and 3D lithographic microfabrication. Adv. Polym. Sci. 170, 169–273 (2004). https://doi.org/10.1007/b94405

    Article  Google Scholar 

  13. K.S. Lee, R.H. Kim, D.Y. Yang, S.H. Park, Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33(6), 631–681 (2008). https://doi.org/10.1016/J.PROGPOLYMSCI.2008.01.001

    Article  Google Scholar 

  14. K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, D.J. Hagan, Two-photon absorption cross-sections of common photoinitiators. J. Photochem. Photobiol. A Chem. 162(2–3), 497–502 (2004). https://doi.org/10.1016/S1010-6030(03)00394-0

    Article  Google Scholar 

  15. Z. Li et al., A straightforward synthesis and structure-activity relationship of highly efficient initiators for two-photon polymerization. Macromolecules 46(2), 352–361 (2013). https://doi.org/10.1021/MA301770A

    Article  ADS  Google Scholar 

  16. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117(15), 10212–10290 (2017). https://doi.org/10.1021/acs.chemrev.7b00074

    Article  Google Scholar 

  17. C.J. Chaing, J.C. Chen, Y.J. Kuo, H.Y. Tsao, K.Y. Wu, C.L. Wang, 2,2′-Bis(trifluoromethyl)biphenyl as a building block for highly ambient-stable, amorphous organic field-effect transistors with balanced ambipolarity. RSC Adv. 6(11), 8628–8638 (2016). https://doi.org/10.1039/C5RA25884G

    Article  ADS  Google Scholar 

  18. V. Charlot, A. Ibrahim, X. Allonas, C. Croutxé-Barghorn, C. Delaite, Photopolymerization of methyl methacrylate: effects of photochemical and photonic parameters on the chain length. Polym. Chem. 5(21), 6236–6243 (2014). https://doi.org/10.1039/C4PY00550C

    Article  Google Scholar 

  19. H. Fu et al., Photopolymerization of acrylate resin and ceramic suspensions with benzylidene ketones under blue/green LED. Polymer (Guildf) 184, 121841 (2019). https://doi.org/10.1016/J.POLYMER.2019.121841

    Article  Google Scholar 

  20. E. Çatal et al., Triphenylamine-based allylidenemalononitrile chromophores: synthesis, and photophysical and second-order nonlinear optical properties. New J. Chem. 42(18), 15052–15060 (2018). https://doi.org/10.1039/C8NJ02794C

    Article  Google Scholar 

  21. M. Wild et al., Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells. Sci. Reports 6(1), 1–8 (2016). https://doi.org/10.1038/srep26263

    Article  Google Scholar 

  22. Y. Erande, S. Kothavale, M.C. Sreenath, S. Chitrambalam, I.H. Joe, N. Sekar, Triphenylamine derived coumarin chalcones and their red emitting OBO difluoride complexes: synthesis, photophysical and NLO property study. Dye. Pigment. 148, 474–491 (2018). https://doi.org/10.1016/J.DYEPIG.2017.09.045

    Article  Google Scholar 

  23. K. Acharyya et al., Self-assembled fluorescent pt(ii) metallacycles as artificial light-harvesting systems. J. Am. Chem. Soc. 141(37), 14565–14569 (2019). https://doi.org/10.1021/JACS.9B08403/ASSET/IMAGES/LARGE/JA9B08403_0004.JPEG

    Article  Google Scholar 

  24. A. Ovsianikov et al., Ultra-low shrinkage hybrid polymerization microfabrication. ACS Nano 2(11), 2257–2262 (2008)

    Article  Google Scholar 

  25. K. Terzaki et al., 3D conducting nanostructures fabricated using direct laser writing. Opt. Mater. Express 1(4), 586–597 (2011). https://doi.org/10.1364/OME.1.000586

    Article  ADS  Google Scholar 

  26. G. Kenanakis, M. Androulidaki, E. Koudoumas, C. Savvakis, N. Katsarakis, Photoluminescence of ZnO nanostructures grown by the aqueous chemical growth technique. Superlattices Microstruct. 42(1–6), 473–478 (2007). https://doi.org/10.1016/J.SPMI.2007.04.037

    Article  ADS  Google Scholar 

  27. E.J.J. Groenen, W.N. Koelman, Spectroscopic study of Michler’s ketone. Part 2.—Luminescence. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 75(0), 69–78 (1979). https://doi.org/10.1039/F29797500069

    Article  Google Scholar 

  28. V. Melissinaki et al., Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication (2011). https://doi.org/10.1088/1758-5082/3/4/045005

    Article  Google Scholar 

  29. I. Sakellari et al., Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6(3), 2302–2311 (2012). https://doi.org/10.1021/nn204454c

    Article  Google Scholar 

  30. I. Spanos, A. Selimis, M. Farsari, 3D magnetic microstructures. Procedia CIRP 74, 349–352 (2018). https://doi.org/10.1016/j.procir.2018.08.139

    Article  Google Scholar 

  31. J.M. Hales et al., 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt. Express 15(6), 3426–3436 (2007). https://doi.org/10.1364/OE.15.003426

    Article  ADS  Google Scholar 

  32. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, B.N. Chichkov, Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Opt. Express 17(4), 2143 (2009). https://doi.org/10.1364/OE.17.002143

    Article  ADS  Google Scholar 

  33. A. Ovsianikov et al., Two-photon polymerization of hybrid sol-gel materials for photonics applications. Laser Chem. (2008). https://doi.org/10.1155/2008/493059

    Article  Google Scholar 

  34. R. Nazir et al., π-expanded α, β-unsaturated ketones: Synthesis, optical properties, and two-photon-induced polymerization. ChemPhysChem 16(3), 682–690 (2015). https://doi.org/10.1002/cphc.201402646

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Aleka Manousaki for SEM technical support. Aix Marseille University and the Centre National de la Recherche (CNRS) are acknowledged for financial supports. This research was also funded by the Agence Nationale de la Recherche (ANR agency) through the PhD grant of Guillaume Noirbent (ANR-17-CE08-0054 VISICAT project) and HELLAS-CH (MIS 5002735) project implemented under “Action for Strengthening Research and Innovation Infrastructures” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) both co-financed by Greece and the European Union (European Regional Development Fund), and FEMTOSURF, the European Union’s Horizon 2020 research and innovation program under grant agreement No. 825512.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Farsari or D. Gray.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladika, D., Noirbent, G., Dumur, F. et al. Synthesis and application of triphenylamine-based aldehydes as photo-initiators for multi-photon lithography. Appl. Phys. A 128, 745 (2022). https://doi.org/10.1007/s00339-022-05887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05887-1

Keywords

Navigation