Skip to main content
Log in

Oxygen vacancies induce changes in lattice parameter, photoluminescence characteristics and Raman spectra of sol–gel derived fluorite-type cubic CeO2 and Ce0.8Zr0.2−xAxO2 (A = Co/Fe, x = 0–0.2) powders

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An attempt has been made here to synthesized ceria (CeO2) and Ce0.80Zr0.20−xAxO2 (A = Fe, Co; x = 0–0.20) powders via novel sol–gel technique using metal nitrate hydrates as precursors and distilled water and ethanol as solvents. The resulting gel was dried at 130 °C for 24 h and calcined successively at 850 and 950 °C for 3 h each. Ceria is shown to exhibit a fluorite-type cubic structure with a slightly higher lattice parameter a = 5.428 Å, Z = 4, space group \(\mathrm{Fm}\overline{3}\mathrm{m }\), some Ce3+ ions and oxygen vacancies. 20% zirconium substitution of cerium causes decrease of ‘a’ to 5.395 Å owing to a lower ionic radius of Zr4+ vis-à-vis Ce4+. However, the lattice parameter first increases and then decreases with partial/ full replacement of Zr4+ by cobalt or iron ions. Evidence is found for existence disorder/strain, mismatch of ionic radii and oxidation states of cations, and appropriate oxygen vacancies to ensure charge neutrality of systems. The photoluminescence (PL) spectra reveal peaks at ~ 371, 402, and 432–445 nm, which are attributed to Ce 4f0 → 4f1 direct transition, Ce 4f0 → 4f1 electron transfer via oxygen F++ state, and oxygen vacancies (excited oxygen F+* → F+ transition), respectively. Their Raman spectra display a peak at ~ 462 cm−1 due to F2g symmetric vibrations of a cubic CeO8 sub-cell with some variation in position and sharpness with/without a signal in the range 150–170 cm−1 by introduction of different cations leading to distortion and formation of anion vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Ning, Y. Zhou, A. Chen, Y. Li, S. Miao, W. Shen, Dispersion of copper on ceria for the low-temperature water-gas shift reaction. Catal. Today 357, 460–467 (2020)

    Article  Google Scholar 

  2. G. Manibalan, G. Murugadoss, R. Thangamuthu, M.R. Kumar, R.M. Kumar, Facile synthesis of CeO2–SnO2 nano composite for electrochemical determination of l-cysteine. J. Alloys Compd. 792, 1150–1161 (2019)

    Article  Google Scholar 

  3. L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, T. Yu, Single CeO2 nanowire gas sensor supported with Pt nanocrystals: gas sensitivity, surface bond states, and chemical mechanism. J. Phys. Chem. C 112, 9061–9065 (2008)

    Article  Google Scholar 

  4. C.T. Campbell, C.H.F. Peden, Oxygen vacancies and catalysis on ceria surfaces. Science 309, 713–714 (2005)

    Article  Google Scholar 

  5. A. Trovarelli, C. de Leitenburg, M. Boaro, G. Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today 50, 353–367 (1999)

    Article  Google Scholar 

  6. P. Li, L. Fang, N. Hou, J. Li, X. Yao, T. Gan, L. Fan, Y. Zhao, Y. Li, Improved performance of Ni–Mo based anode for direct methanol solid oxide fuel cells with the addition of rare earth oxides. J. Electrochem. Soc. 164, 1142–1148 (2017)

    Article  Google Scholar 

  7. P. Li, B. Yu, J. Li, X. Yao, Y. Zhao, Y. Li, Improved activity and stability of Ni–Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum. J. Power Sources 320, 251–256 (2016)

    Article  ADS  Google Scholar 

  8. C. Walkey, S. Das, S. Seal, J. Erlichman, K. Heckmanc, L. Ghibelli, E. Traversa, J.F. McGinnis, W.T. Self, catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci. Nano 2, 33–53 (2015)

    Article  Google Scholar 

  9. S. Das, J.M. Dowding, K.E. Klump, J.F. McGinnis, W. Self, S. Seal, Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8, 1483–1508 (2013)

    Article  Google Scholar 

  10. Q. Yuan, H.-H. Duan, L.-L. Li, L.-D. Sun, Y.-W. Zhang, C.-H. Yan, Controlled synthesis and assembly of ceria-based nanomaterials. J. Coll. Interface Sci. 335, 151–167 (2009)

    Article  ADS  Google Scholar 

  11. M. Di, K. Simmance, A. Schaefer, Y. Feng, F. Hemmingsson, M. Skoglundh, T. Bell, D. Thompsett, L.I.A. Jensen, S. Blomberg, P. Carlsson, Chasing PtOx species in ceria supported platinum during CO oxidation extinction with correlative operando spectroscopic techniques. J. Catal. 409, 1–11 (2022)

    Article  Google Scholar 

  12. H. Sun, Y. Zhang, C. Wang, M. Isaacs, A. Osman, Y. Wang, D. Rooney, Y. Wang, Z. Yan, C. Parlett, F. Wang, C. Wu, Integrated carbon capture and utilization: synergistic catalysis between highly dispersed Ni clusters and ceria oxygen vacancies. Chem. Engi. J. 437, 135394 (2022)

    Article  Google Scholar 

  13. E.M. Sala, N. Mazzanti, M.B. Mogensen, C. Chatzichristodoulou, Current understanding of ceria surfaces for CO2 reduction in SOECs and future prospects—a review. Solid State Ion. 375, 115833 (2022)

    Article  Google Scholar 

  14. D. Liu, H. Zhu, S. Yuan, N. Shi, J. Yu, T. Li, Q. Ma, W. Zhao, H. Ren, W. Guo, Understanding the oxygen-vacancy-related catalytic cycle for H2 oxidation on ceria-based SOFC anode and the promotion effect of lanthanide doping from theoretical perspectives. Appl. Surf. Sci. 576, 151803 (2022)

    Article  Google Scholar 

  15. I.Y. Kaplin, E.S. Lokteva, K.I. Maslakov, A.V. Tikhonov, A.N. Kharlanov, A.V. Fionov, A.O. Kamaev, O.Y. Isaikina, S.V. Maksimov, E.V. Golubina, Ceria-silica mesoporous catalysts for CO preferential oxidation in H2-rich stream: the effect of Ce:Si ratio and copper modification. Appl. Surf. Sci. 594, 153473 (2022)

    Article  Google Scholar 

  16. E. Kim, J. Hong, S. Hong, C. Kanade, H. Seok, H. Kim, T. Kim, Improvement of oxide removal rate in chemical mechanical polishing by forming oxygen vacancy in ceria abrasives via ultraviolet irradiation. Mater. Chem. Phys. 273, 124967 (2021)

    Article  Google Scholar 

  17. W.J. Jeon, H. Kim, S.H. Byeon, Ce3+ concentration control on the surface of ceria nanoparticles and the stability of surface Ce3+ in aqueous, silica, and PVA media. Colloids Surf. A Physicochem. Eng. Aspects 640, 128416 (2022)

    Article  Google Scholar 

  18. M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, B. Delmon, Characterization of CeO2–ZrO2 mixed oxides. Comparison of the citrate and sol–gel preparation methods. Chem. Mater. 15(2), 395–403 (2003)

    Article  Google Scholar 

  19. J.G. Mira, V.R. Pérez, A. Bueno-lópez, Effect of the CeZrNd mixed oxide synthesis method in the catalytic combustion of soot. Catal. Today 253, 77–82 (2015)

    Article  Google Scholar 

  20. A.P. Anantharaman, H.J. Gadiyar, M. Surendran, A.S. Rao, H.P. Dasari, H. Dasari, G.U.B. Babu, Effect of synthesis method on structural properties and soot oxidation activity of gadolinium-doped ceria. Chem. Pap. 72, 3179–3188 (2018)

    Article  Google Scholar 

  21. J.C. Muñoz, F.A. Prado, J.E. Rodríguez-Páez, Cerium oxide nanoparticles: synthesis, characterization and tentative mechanism of particle formation. Coll. Surf. A Physicochem. Eng. Asp. 529, 146–159 (2017)

    Article  Google Scholar 

  22. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approach. Int. J. Mol Sci. 17, 1500–1534 (2016)

    Article  Google Scholar 

  23. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1, 515–519 (2001)

    Article  ADS  Google Scholar 

  24. S. Chahal, S. Singh, A. Kumar, P. Kumar, Oxygen-deficient lanthanum doped cerium oxide nanoparticles for potential applications in spintronics and photocatalysis. Vacuum 177, 109388–109395 (2020)

    Article  ADS  Google Scholar 

  25. J. Huang, X. Zhang, T. Fang, B. Liu, T. Lv, Z. Mao, Effect of La content on infrared radiation performance of lanthanum-cerium oxides for high temperature application. Opt. Mater. 108, 110211 (2020)

    Article  Google Scholar 

  26. P. Nagaraju, Y. Vijayakumar, R.J. Choudhary, M.V.R. Reddy, Preparation and characterization of nanostructured Gd doped cerium oxide thin films by pulsed laser deposition for acetone sensor application. Mater. Sci. Eng. B 226, 99–106 (2017)

    Article  Google Scholar 

  27. B.C.H. Steele, Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ion. 129, 95–110 (2000)

    Article  Google Scholar 

  28. M. Mogenson, N.M. Sammes, G.A. Tompsett, Physical, chemical, and electrochemical properties of pure and doped ceria. Solid State Ion. 129, 63–94 (2000)

    Article  Google Scholar 

  29. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Comp., Boston, 1978)

    Google Scholar 

  30. I. Djerdj, D. Arcon, Z. Jaglicic, M. Niederberger, Nonaqueous, synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties. J. Phys. Chem. C 111, 3614–3623 (2007)

    Article  Google Scholar 

  31. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  32. S. Gnanam, V. Rajendran, Synthesis of CeO2 or α-Mn2O3 nanoparticles via sol–gel process and their optical properties. J. Sol-Gel Sci. Technol. 58, 62–69 (2011)

    Article  Google Scholar 

  33. S. Colis, A. Bouaine, G. Schmerber, C.U. Bouillet, A. Dinia, S. Choua, P. Turek, High-temperature ferromagnetism in Co-doped CeO2 synthesized by the coprecipitation technique. Phys. Chem. Chem. Phys. 14, 7256–7263 (2012)

    Article  Google Scholar 

  34. G. Wang, Q. Mu, T. Chen, Y. Wang, Synthesis, characterization, and photoluminescence of CeO2 nanoparticles by a facile method at room temperature. J. Alloy Compd. 493, 202–207 (2010)

    Article  Google Scholar 

  35. S. Rajyalakshmi, K.R. Rao, B. Brahmaji, K. Samatha, T.K.V. Rao, Y. Ramakrishna, Investigations on structural and photoluminescence mechanism of cerium doped l-Histidin hydrochloride mono hydrate single crystals for optical applications. J. Mol. Struct. 1129, 231–238 (2017)

    Article  ADS  Google Scholar 

  36. K. Suresh, K.V.R. Murthy, Ch.A. Rao, N.V.P. Ra, B.S. Rao, Synthesis and characterization of nano Sr2CeO4 doped with Eu and Gd phosphor. J. Lumin. 133, 96–101 (2013)

    Article  Google Scholar 

  37. S.K. Hong, D.S. Jung, H.J. Lee, Y.C. Kang, Effect of preparation temperature on the formation of Sr2CeO4 phosphor particles in the spray pyrolysis. Korean J. Chem. Eng. 23, 496–498 (2006)

    Article  Google Scholar 

  38. P.K. Mishra, P.K. Rai, Ultrafast removal of arsenic using solid solution of aero-gel based Ce1XTixO2Y oxide nanoparticles. Chemosphere 217, 483–495 (2019)

    Article  ADS  Google Scholar 

  39. A. Varez, E. Garcia-Gonzalez, J. Sanz, Cation miscibility in CeO2–ZrO2 oxides with fluorite structure. A combined TEM, SAED and XRD Rietveld analysis. J. Mater. Chem. 16, 4249–4256 (2006)

    Article  Google Scholar 

  40. S. Chauhan, L.K. Pradhan, M. Kar, R.K. Singh, J. Kumar, S.K. Jaiswal, Sol–gel synthesis, crystalline phase, optical absorption, and photoluminescence behavior of cerium-doped (Ba0.5Sr0.5)FeO3δ powders. Mater. Res. Exp. 6, 105520 (2019)

    Article  Google Scholar 

  41. A. Filtschew, K. Hofmann, C. Hess, Ceria and its defect structure: new insights from a combined spectroscopic approach. J. Phys Chem. C 120, 6694–6703 (2016)

    Article  Google Scholar 

  42. R. Brackmann, F.S. Toniolo, M. Schmal, Synthesis and characterization of Fe-doped CeO2 for application in the NO selective catalytic reduction by CO. Top. Catal. 59, 1772–1786 (2016)

    Article  Google Scholar 

  43. S. Chauhan, M. Kar, J. Kumar, S.K. Jaiswal, Cerium induced Raman spectra (Ba0.5Sr0.5)(Fe1xCex)O3δ (x = 0–1). Mater. Chem. Phys. 241, 122378 (2020)

    Article  Google Scholar 

  44. N. Kainbayev, M. Sriubas, D. Virbukas, Z. Rutkuniene, K. Bockute, S. Bolegenova, G. Laukaitis, Raman study of nanocrystalline-doped cerium oxide thin films. Coatings 10, 432 (2020)

    Article  Google Scholar 

  45. W.H. Weber, K.C. Hass, J.R. McBride, Raman study of CeO2: second-order scattering, lattice defects, and particle-size effects. Phys. Rev. B 48, 178–185 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, under the Grant (File number: 22 (0849)/20/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra Kumar Jaiswal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jitendra Kumar: Formerly at Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samdarshi, S.K., Agrawal, A.K., Chauhan, S. et al. Oxygen vacancies induce changes in lattice parameter, photoluminescence characteristics and Raman spectra of sol–gel derived fluorite-type cubic CeO2 and Ce0.8Zr0.2−xAxO2 (A = Co/Fe, x = 0–0.2) powders. Appl. Phys. A 128, 712 (2022). https://doi.org/10.1007/s00339-022-05860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05860-y

Keywords

Navigation