Skip to main content

Advertisement

Log in

Metasurfaces design for tuning of flexural wave and SH wave

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a square mass oscillator elastic metasurface (SMEM) is used to manipulate flexural wave and SH wave. Due to the symmetry of its oscillator in z and y directions, the functional units of the SMEM have the same phase delay effects in the motion direction of the two waves, so as to realize the modulation of flexural and SH waves. According to Generalized Snell’s Law, abnormal refraction and beam focusing can be achieved by reasonably changing the side length of the cross section. In particular, the proposed metasurface can even realize the abnormal refraction of two waves simultaneously. In addition, the multiple mass oscillator array design (MMAD) can also greatly broaden the operating frequency domain. This study presents a method for achieving multifunctional metasurfaces with potential applications in areas such as vibration control, energy harvesting, and noise isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. J. Wen et al., Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials. Phys. Lett. A 337(34–36), 2199–2206 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. B. Assouar et al., Acoustic metasurfaces. Nat. Rev. Mater. 3(12), 460–472 (2018)

    Article  ADS  Google Scholar 

  3. N. Yu et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–337 (2011)

    Article  ADS  Google Scholar 

  4. Y. Zhao et al., Manipulation of reflected airborne sound by using ultra-thin and lightweight metasurface with mechanical rigidity. Mater China 40(01), 22–28 (2021)

    Google Scholar 

  5. Liu, B., Study on the negative reflection and refraction of acoustic/optical gradient metasurface. Dissertation for the Doctoral Degree, Harbin Institute of Technology (2020) (In Chinese)

  6. Y. Liu et al., Design of elastic metasurfaces for controlling shear vertical waves using uniaxial scaling transformation method. Int. J. Mech. Sci. 169, 105335 (2020)

    Article  Google Scholar 

  7. Q. Chu et al., Acoustic metasurfaces refraction based on generalized Snell’s law. Chin. J Electron Devices 44(02), 498–501 (2021). (In Chinese)

    Google Scholar 

  8. Z. Wang, Z.G. Zhao, X.Q. Zhao, An acoustic metasurface composed by unidirectional fiber composite materials. Acta Materiae Compositae Sin 39(07), 3346–3353. https://doi.org/10.13801/j.cnki.fhclxb.20210816.003 (2022)

    Google Scholar 

  9. S. Qi et al., Ultrathin acoustic metasurfaces for reflective wave focusing. J. Appl. Phys. 123(23), 234501 (2018)

    Article  ADS  Google Scholar 

  10. Y. Dong et al., Transmission control of acoustic metasurface with dumbbell-shaped double-split hollow sphere. Mod. Phys. Lett. B 34(33), 2050386 (2020)

    Article  ADS  Google Scholar 

  11. S. Zhao et al., Delivering sound energy along an arbitrary convex trajectory. Sci. Rep. (2015). https://doi.org/10.1038/srep06628

    Article  Google Scholar 

  12. J. Zeng et al., Phase modulation of acoustic vortex beam with metasurfaces. Phys. Lett. 383(22), 2640–2644 (2019)

    Article  Google Scholar 

  13. Y. Xu et al., Acoustic wave regulation and control by coiling up space typed metasurface. Tech. Acoust. 37(06), 515–520 (2018). (In Chinese)

    Google Scholar 

  14. J. Chen et al., Continuous-phase-transformation acoustic metasurface. Result Phys. 30, 104840 (2021)

    Article  Google Scholar 

  15. H. Zou et al., An ultra-thin acoustic metasurface with multiply resonant units. Phys. Lett. 384(7), 126151 (2020)

    Article  Google Scholar 

  16. W. Xu et al., Anomalous refraction control of mode-converted elastic wave using compact notch-structured metasurface. Mater. Res. Express 6(6), 065802 (2019)

    Article  ADS  Google Scholar 

  17. W. Xu et al., Anomalous refraction manipulation of Lamb waves using single-groove metasurfaces. Phys. Scr. 94(10), 105807 (2019)

    Article  ADS  Google Scholar 

  18. X. Wang et al., Tunable annular acoustic metasurface for transmitted wavefront modulation. Appl. Phys. Express 13(1), 014002 (2020)

    Article  ADS  Google Scholar 

  19. P. Shi et al., Tunable modulation of flexural waves by adaptive elastic metasurface. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), IEEE, 2021.

  20. L. Cao et al., Pillared elastic metasurface with constructive interference for flexural wave manipulation. Mech. Syst. Signal. Process. 146, 107035 (2021)

    Article  Google Scholar 

  21. Y. Xu et al., Deflecting incident flexural waves by nonresonant single-phase meta-slab with subunits of graded thicknesses. J. Sound Vib. 454, 51–62 (2019)

    Article  ADS  Google Scholar 

  22. P. Li et al., The flexural-wave-based lens design for energy focusing via the trajectory prediction and the phase modulation. Energy 220, 119716 (2021)

    Article  Google Scholar 

  23. S. Yuan et al., Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation. J. Sound Vib. 470, 115168 (2020)

    Article  Google Scholar 

  24. Y. Shen et al., 3D-printed meta-slab for focusing flexural waves in broadband. Extrem. Mech. Lett. 48, 101410 (2021)

    Article  Google Scholar 

  25. A. Song et al., Study on asymmetric beam characteristics of acoustic metasurfaces. J. Synth. Cryst. 50(07), 1362–1370 (2021). (In Chinese)

    Google Scholar 

  26. Z. Lin et al., Modular elastic metasurfaces with mass oscillators for transmitted flexural wave manipulation. J. Phys. D: Appl. Phys. 54, 255303 (2021)

    Article  ADS  Google Scholar 

  27. C. Xuan et al., Broadband tunable elastic metastructure based on one-dimensional phononic crystal. J. Appl. Phys. 129, 245102 (2021)

    Article  ADS  Google Scholar 

  28. Z. Lin et al., Modulation and research of ultra wideband acoustic vortex device. J. She. Aerosp. Univ. 38(03), 7–13 (2021). (In Chinese)

    Google Scholar 

  29. Y. Xie et al., Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5(1), 1–5 (2014)

    ADS  Google Scholar 

  30. H. Zhu et al., Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces. Phys. Rev. Lett. 117(3), 034302 (2016)

    Article  ADS  Google Scholar 

  31. Z. Lin et al., Elastic metasurfaces for full wavefront control and low-frequency energy harvesting. J. Vib. Acoust. (2021). https://doi.org/10.1115/1.4050275

    Article  Google Scholar 

  32. X. Su et al., Elastic metasurfaces for splitting SV- and P-waves in elastic solids. J. Appl. Phys. 123(9), 091701 (2018)

    Article  ADS  Google Scholar 

  33. S. Yuan et al., Tunable multifunctional fish-bone elastic metasurface for the wavefront manipulation of the transmitted in-plane waves. J. Appl. Phys. 128(22), 224502 (2020)

    Article  ADS  Google Scholar 

  34. X. Su et al., Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps. J. Acoust. Soc. Am. 139(6), 3386–3394 (2016)

    Article  ADS  Google Scholar 

  35. Y. Li et al., Metascreen-based acoustic passive phased array. Phys. Rev. Appl. 4, 024003 (2015)

    Article  ADS  Google Scholar 

  36. L. Cao et al., Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces. Appl. Phys. Lett. 113, 183506 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11502149, 11302135), Natural Science Foundation of Suqian City (No. K202124), Scientific Research Foundation of Suqian University. The financial contributions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benhua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liu, H., Zhang, B. et al. Metasurfaces design for tuning of flexural wave and SH wave. Appl. Phys. A 128, 695 (2022). https://doi.org/10.1007/s00339-022-05849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05849-7

Keywords

Navigation