Skip to main content
Log in

Improving the optical, electrical and dielectric characteristics of ZnO nanoparticles through (Fe + Al) addition for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, undoped ZnO and co-doped Zn(0.99 − x)Fe0.01AlxO (x = 0.01, 0.03 and 0.05) were effectively prepared by the co-precipitation process. The structural, morphological, optical and electrical properties were investigated in order to explore the effect of concentration of co-doped Al on the physical properties of ZnO nanopowders. Besides, the structural analysis revealed the formation of the hexagonal wurtzite structure of all the powdered compositions. The crystallite size was found to decline with Fe and Al incorporation into ZnO crystal lattice. An additional peak attributed to the secondary phase Al was also noted for the Zn0.94Fe0.01Al0.05O sample. Moreover, the morphological study suggested the change in the morphology of ZnO nanoparticles at higher Al co-doping concentrations and proved the formation of the secondary phase Al for the Zn0.94Fe0.01Al0.05O composition. Concerning optical properties, the optical band gap energy was found to decline with increasing Al co-doping concentration. An increasing trend of the Urbach energy was noted due to Fe/Al co-doping. Furthermore, the electrical and dielectric characterizations were performed in the same range of frequency and temperature. The obtained results showed that the dielectric constant was gradually increased with the rise of Al concentration. The electrical conductivity of ZnO nanopowder samples was also enhanced under the incorporation of Al into the ZnO matrix. This contribution enhances the understanding of optical and electrical properties of Fe/Al co-doped ZnO nanopowders for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form a part of an ongoing study.

References

  1. J. Singh, R.C. Singh, Enhancement of optical, dielectric and transport properties of (Sm, V) co-doped ZnO system and structure-property correlations. Ceram. Int. 47, 10611–10627 (2021)

    Article  Google Scholar 

  2. R. Vettumperumal, S. Kalyanaraman, B. Santoshkumar, R. Thangavel, Estimation of electron-phonon coupling and urbach energy in group-I elements doped ZnO nanoparticles and thin films by sol–gel method. Mater. Res. Bull. 77, 101–110 (2016)

    Article  Google Scholar 

  3. B. Dey, R. Narzary, L. Chouhan, S. Bhattacharjee, B.N. Parida, A. Mondal, S. Ravi, S.K. Srivastava, Crystal structure, optical and dielectric properties of Ag:ZnO composite-like compounds. J Mater Sci: Mater Electron. 33, 2855–3286 (2022)

    Google Scholar 

  4. H. Saadi, F.I.H. Rhouma, Z. Benzarti, Z. Bougrioua, S. Guermazi, K. Khirouni, Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater. Res. Bull. 129, 110884–110895 (2020)

    Article  Google Scholar 

  5. C.V. Ramana, S. Utsunomiya, R.C. Ewing, U. Becker, V.V. Atuchin, VSh. Aliev, V.N. Kruchinin, Spectroscopic ellipsometry characterization of the optical properties and thermal stability of ZrO2 films made by ion-beam assisted deposition. Appl. Phys. Lett. 92, 011917–011920 (2008)

    Article  ADS  Google Scholar 

  6. V.A. Shvets, VSh. Aliev, D.V. Gritsenko, S.S. Shaimeev, E.V. Fedosenko, S.V. Rykhlitski, V.V. Attuchin, V.A. Gristsenko, V.M. Tapilin, H. Wong, Electronic structure and charge transport properties of amorphous Ta2O5. J. Non-Cryst. Solids 354, 3025–3033 (2008)

    Article  ADS  Google Scholar 

  7. N.N. Golovnev, M.S. Molkeev, I.V. Sterkhova, M.K. Lesnikov, V.V. Atuchin, Coordination effects in hydrated manganese (II) 1,3-diethyl-2-thiobarbiturates and their thermal stability. Polyhedron 134, 120–125 (2017)

    Article  Google Scholar 

  8. L. Dyshlyuk, O. Babich, S. Ivanova, N. Vasilchenco, V. Atuchin, I. Korolkov, D. Russakov, A. Prosekov, Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. Int. Biodeterior. Biodegrad. 146, 104821–104828 (2020)

    Article  Google Scholar 

  9. V.V. Atuchin, M.S. Lebedev, I.V. Korolkov, V.N. Kruchinin, E.A. Maksimovskii, S.V. Trubin, Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi− xO2 (0 ≤ x ≤ 1) films prepared by the ALD method. J. Mater. Sci.: Mater. Electron. 30, 812–823 (2019)

    Google Scholar 

  10. A.M. El Nahrawy, A.B.A. Hammad, A.M. Mansour, Structural investigation and optical properties of Fe, Al, Si, and Cu–ZnTiO3 nanocrystals. Phys. Scr. 96, 115801 (2021)

    Article  ADS  Google Scholar 

  11. A.B.A. Hammad, A.M. Mansour, A.M. El Nahrawy, Ni2+ doping effect on potassium barium titanate nanoparticles: enhancement optical and dielectric properties. Phys. Scr. 96, 125821 (2021)

    Article  ADS  Google Scholar 

  12. M. Kaur, V. Kumar, P. Kaur, M. Lal, P. Negi, R. Sharma, Effect on the dielectric properties due to In–N co-doping in ZnO particles. J. Mater. Sci: Mater Electron. 32, 8991–9004 (2021)

    Google Scholar 

  13. B. Poornaprakash, S. Ramu, K. Subramanyam, Y.L. Kim, M. Kumar, M.S.P. Reddy, Robust ferromagnetism of ZnO:(Ni+Er) diluted magnetic semiconductor nanoparticles for spintronic applications. Ceram. Int. 47, 18557–18564 (2021)

    Article  Google Scholar 

  14. P. Sahoo, A. Sharma, S. Padhan, G. Udayabhanu, R. Thangavel, UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol–gel hydrothermal technique for enhanced solar energy harvesting applications. Sol. Energy 193, 148–216 (2019)

    Article  ADS  Google Scholar 

  15. U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy) doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8, 17582–17594 (2018)

    Article  ADS  Google Scholar 

  16. B.L. da Silva, B.L. Caetano, B.G. Chiari-Andreo, R.C.L.R. Pietro, L.A. Chiavacci, Colloids Surf. B: Biointerfaces. 177, 440–447 (2019)

    Article  Google Scholar 

  17. N.A. Shad, M.M. Sajid, Y. Javed, N. Amin, M. Ikram, K. Akhtar, G. Ahmad, F. Ali, A. Razaq, High-yield synthesis of pure ZnO nanoparticles by one-stepsolid-state reaction approach for enhanced photocatalyticactivity. J. Chin. Chem. Soc. 67, 1045–1053 (2020)

    Article  Google Scholar 

  18. F. Kabir, A. Murtaza, A. Saeed, A. Ghani, A. Ali, S. Khan, L. Kaili, Z. Qizhong, Y.K. Kang, S. Yang, Room temperature ferromagnetism in dilute magnetic semiconducting ZnO nanoparticles co-doped with Tb and Fe. J Mater Sci: Mater Electron. 32, 10734–11074 (2021)

    Google Scholar 

  19. W. Bouslama, M.B. Ali, N. Sdiri, H. Elhouichet, Conduction mechanisms and dielectric constant features of Fe doped ZnO nanocrystals. Ceram. Int. 47, 19106–19114 (2021)

    Article  Google Scholar 

  20. P.R. Chithira, T.T. John, Correlation among oxygen vacancy and doping concentration in controlling the properties of cobalt doped ZnO nanoparticles. J. Magn. Magn. Mater. 496, 165928–165959 (2020)

    Article  Google Scholar 

  21. M.S. Nadeem, T. Munawar, F. Mukhtar, M.N. Rahman, M. Riaz, F. Iqbal, Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceram. Int. 47, 11109–11121 (2021)

    Article  Google Scholar 

  22. T.M. Bawazeer, M.S. Alsoufi, M. Shkir, B.M. Al-Shehri, M.S. Hamdy, Excellent improvement in photocatalytic nature of ZnO nanoparticles via Fe doping content. Inorg. Chem. Commun. 130, 108668–108691 (2021)

    Article  Google Scholar 

  23. R. Selvanayak, M. Rameshbabu, S. Muthupandi, M. Razia, S.S. Florence, K. Ravichandran, K. Prabha, Structural, optical and electrical conductivity studies of pure and Fe doped Zinc Oxide (ZnO) nanoparticles. Mater. Today: Proc. 497, 2628–2631 (2022)

    Google Scholar 

  24. H. Saadi, Z. Benzarti, F.I.H. Rhouma, P. Sanguino, S. Guermazi, K. Khirouni, M.T. Vieira, Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J. Mater. Sci. Mater. Electron. 32, 1536–1556 (2021)

    Article  Google Scholar 

  25. N.R. Khalid, A. Hammad, M.B. Tahir, M. Rafique, T. Iqbal, G. Nabi, M.K. Hussain, Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 45, 21430–21435 (2019)

    Article  Google Scholar 

  26. M.U. Tariq, Y. Li, W.-X. Li, Z.-R. Yu, J.-M. Li, Y.-M. Hu, M.-Y. Zhu, H.-M. Jin, Y. Liu, Y.-B. Li, K. Skotnicova, Structural, ferromagnetic, and optical properties of Fe and Al co-doped ZnO diluted magnetic semiconductor nanoparticles synthesized under high magnetic field. Adv. Manuf. 7, 248–255 (2019)

    Article  Google Scholar 

  27. M. Jannesari, M. Asemi, M. Ghanaatshoar, Sol–gel preparation of Fe and Al co-doped ZnO nanostructured materials. J Sol-Gel Sci Technol. 83, 181–189 (2017)

    Article  Google Scholar 

  28. P.G. Ray, M. Das, M. Wan, C. Jacob, S. Roy, P. Basak, S. Dhara, Surfactant and catalyst free facile synthesis of Al-doped ZnO nanorods—an approach towards fabrication of single nanorod electrical devices. Appl. Surf. Sci. 512, 145732–145739 (2020)

    Article  Google Scholar 

  29. M. Tariq, Y. Li, W.-X. Li, Z.-R. Yu, J.-M. Li, Y.-M. Hu, M.-Y. Zhu, H.-M. Jin, Y. Liu, Y.-B. Li, K. Skotnicova, Structural, ferromagnetic, and optical properties of Fe and Al co-doped ZnO diluted magnetic semiconductor nanoparticles synthesized under high magnetic field. Adv. Manuf. 7, 248–255 (2019)

    Article  Google Scholar 

  30. A.M. El Nahrawy, A.B.A. Hammad, A.M. Bakr, Th.I. Shaheen, A.M. Mansour, Sol–gel synthesis and physical characterization of high impact polystyrene nanocomposites based on Fe2O3 doped with ZnO. Appl. Phys. A. 126, 654–664 (2020)

    Article  ADS  Google Scholar 

  31. A.M. El Nahrawy, A.S. Montaser, A.M. Bakr, A.B.A. Hammad, A.M. Mansour, Impact of ZnO on the spectroscopic, mechanical, and UPF properties of Fe2O3-tough polystyrene-based nanocomposites. J Mater Sci: Mater Electron. 32, 28019–28031 (2021)

    Google Scholar 

  32. A. Dahshan, A.B.A. Hammad, K.A. Aly, A.M. El Nahrawy, Eu2O3 role in the optical and photoluminescence properties of 50SiO2–7 MgO–20 ZnO–(23–x) La2O3 – x Eu2O3 nano-crystalline thin film. Appl. Phys. A. 126, 19–26 (2020)

    Article  ADS  Google Scholar 

  33. H. Ji, Z. Huang, Z. Xia, M.S. Molokeev, X. Jiang, Z. Line, V.V. Atuching, Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 44, 7679–86 (2015)

    Article  Google Scholar 

  34. V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, S.G. Dorzhieva, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, A.M. Pugachev, Yu.L. Tushinova, A.P. Yelisseyev, Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12. Adv. Powder Technol. 28, 1309–1315 (2017)

    Article  Google Scholar 

  35. V.V. Atuchin, L.I. Isaenko, V.G. Kesler, Z.S. Lin, M.S. Molokeev, A.P. Yelisseyev, S.A. Zhurkov, Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite. J. Solid State Chem. 187, 159–164 (2012)

    Article  ADS  Google Scholar 

  36. A.M. El Nahrawy, A. Elzwawy, A.B.A. Hammad, A.M. Mansour, Influence of NiO on structural, optical, and magnetic properties of Al2O3–P2O5–Na2O magnetic porous nanocomposites nucleated by SiO2. Solid State Sci. 108, 106454 (2020)

    Article  Google Scholar 

  37. V.R. Akshay, B. Arun, G. Mandal, M. Vasundhara, Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method. Phys. Chem. Chem. Phys. 21, 12991–13004 (2019)

    Article  Google Scholar 

  38. S.M. Yakout, Influence of Na and Na/Fe doping on the dielectric constant, ferromagnetic and sunlight photocatalytic properties of BaTiO3 perovskite. J. Solid State Chem. 290, 121517–121527 (2020)

    Article  Google Scholar 

  39. S. Kanchana, M.J. Chithra, S. Ernest, K. Pushpanathan, Violet emission from Fe doped ZnO nanoparticles synthesized by precipitation method. J. Lumin. 176, 6–14 (2016)

    Article  Google Scholar 

  40. D.Y. Inamdar, A.K. Pathak, I. Dubenko, N. Ali, S. Mahamuni, Room temperature ferromagnetism and photoluminescence of Fe doped ZnO nanocrystals. J. Phys. Chem. C. 115, 23671–23676 (2011)

    Article  Google Scholar 

  41. N. Kati, Investigation of optical and morphological properties of Co doped ZnO nanomaterial. Turk. J. Sci. Technol. 14, 41–48 (2019)

    Google Scholar 

  42. Y.G. Denisenko, M.S. Molokeev, A.S. Oreshonkov, A.S. Krylov, A.S. Aleksandrovsky, N.O. Azarapin, O.V. Andreev, I.A. Razumkova, V.V. Atuchin, Crystal structure, vibrational, spectroscopic and thermochemical properties of double sulfate crystalline hydrate [CsEu(H2O)3(SO4)2]·H2O and its thermal dehydration product CsEu(SO4)2. Crystals 11, 1027–1051 (2021)

    Article  Google Scholar 

  43. N.N. Golovnev, M.S. Molokeev, S.N. Vershchagin, V.V. Atuchin, Calcium and strontium thiobarbiturates with discrete and polymeric structures. J. Coord. Chem. 66, 4119–4130 (2013)

    Article  Google Scholar 

  44. N.N. Golovnev, M.S. Molokeev, M.K. Lesnikov, V.V. Atuchin, First outer-sphere 1,3-diethyl-2-thiobarbituric compounds [M(H2O)(6)] (1,3-diethyl-2-thiobarbiturate)(2)center dot 2H(2)O (M = Co2+, Ni2+): crystal structure, spectroscopic and thermal properties. Chem. Phys. Lett. 653, 54–59 (2016)

    Article  ADS  Google Scholar 

  45. A. Kumar, M.K. Warshi, V. Mishra, S.K. Saxena, R. Kumar, P.R. Sagdeo, Strain control of Urbach energy in Cr-doped PrFeO3. Appl. Phys. A. 123, 576–583 (2017)

    Article  ADS  Google Scholar 

  46. L.P. Chanu, S. Phanjoubam, Study on the structural and electrical properties of YMnO3 co-substituted with transition metal ions at Mn-site and their conduction mechanism. J Mater Sci: Mater Electron. 33, 6107–6120 (2022)

    Google Scholar 

  47. K.C.B. Naidu, V.N. Reddy, T.S. Sarmash, D. Kothandan, T. Subbarao, N.S. Kumar, Structural, morphological, electrical, impedance and ferroelectric properties of BaO–ZnO–TiO2 ternary system. J. Aust. Ceram. Soc. 55, 201–218 (2019)

    Article  Google Scholar 

  48. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, B. Narasaiah, Dielectric, magnetic hyperthermia and photocatalytic properties of Mg0.7Zn0.3Fe2O4 nanocrystals. IEEE Trans. Magn. 56, 5200207–5200234 (2020)

  49. M. Salah, S. Azizi, A. Boukhachem, C. Khaldi, M. Amlouk, J. Lamloumi, Rietveld refinement of X-ray diffraction, impedance spectroscopy and dielectric relaxation of Li-doped ZnO-sprayed thin films. Appl. Phys. A 615, 125–145 (2019)

    Google Scholar 

  50. S.E.L. Kossi, C.Rayssi, A.H. Dhahri, J. Dhahri, K. Khirouni, High dielectric constant and relaxor behavior in La0.7Sr0.25Na0.05Mn0.8Ti0.2O3 manganite. J. Alloys Compd. 767, 456–463 (2018)

  51. A.M.El. Nahrawy, B.A. Hemdan, A.B.A. Hammad, Morphological, impedance and terahertz properties of zinc titanate/Fe3+ nanocrystalline for suppression of Pseudomonans aeruginosa biofilm. 26, 100715–100727 (2021)

  52. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gelcombustion route. Mater. Sci. Eng. B 177, 428–435 (2012)

    Article  Google Scholar 

  53. A.M.El. Nahrawy, A.B.A. Hammad, A.M. Bakr, A.R. Wassel, Adjustment of morphological and dielectric properties of ZnTiO3 nanocrystalline using Al2O3 nanoparticles. Appl. Phys. A. 125, 54–51 (2019).

  54. O. Gürbüz, M. Okutan, Structural, electrical, and dielectric properties of Cr doped ZnO thin films: role of Cr concentration. Appl. Surf. Sci. 387, 1211–1218 (2016)

    Article  ADS  Google Scholar 

  55. C. Belkhaoui, N. Mzabi, H. Smaoui, P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 12, 1686–1696 (2019)

    Article  ADS  Google Scholar 

  56. B. Askri, I. Riahi, R. Mimouni, M. Amlouk, Photoluminescence and dielectric properties of (Al/Cu) and (In/Cu) co-doped ZnO sprayed thin films under the oxygen deficiency framework. Superlattices Microstruct. 150, 106731–106752 (2021)

    Article  Google Scholar 

  57. H.M. Ahsan, K. Lal, M. Saleem, G.M. Mustafa, M.A. Khan, A.S. Haidyrah, S. Atiq, Tuning the dielectric behavior and energy storage properties of Mn/Co co-doped ZnO. Mater. Sci. Semicond. Process. 134, 105977–105985 (2021)

    Article  Google Scholar 

  58. M. Ashokkumar, S. Muthukumaran, Effect of Cr-doping on dielectric, electric and magnetic properties of Zn0.96Cu0.04O nanopowders. Powder Technol. 268, 80–85 (2014).

  59. S. Das, S. Das, S. Sutradhar, Effect of Gd3+ and Al3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceram. Int. 43, 6932–6941 (2017)

    Article  Google Scholar 

  60. J. Jadhav, S. Biswas, Structural and electrical properties of ZnO: Ag core-shell nanoparticles synthesized by a polymer precursor method. Ceram. Int. 42, 16598–16610 (2016)

    Article  Google Scholar 

  61. A.M.El. Nahrawy, A.M. Bakr, B.A. Hemdan, A.B.A. Hammad, Identification of Fe3+co‑doped zinc titanate mesostructures using dielectric and antimicrobial activities. Int. J. Environ. Sci. Technol. 17, 4481–4494 (2020).

  62. N. Bhakta, P.K. Chakrabarti, XRD analysis, Raman, AC conductivity and dielectric properties of Co and Mn co-doped SnO2 nanoparticles. Appl. Phys. A 73, 125–135 (2019)

    Google Scholar 

  63. O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, B.Z. Kurt, Z. Durmus, M. Caglar, A. Turut, Co doped YbFeO3: exploring the electrical properties via tuning the doping level. Ionics 25, 4013–4029 (2019)

    Article  Google Scholar 

  64. S. Khera, P. Chand, Influence of different solvents on the structural, optical, impedance and dielectric properties of ZnO nanoflakes. Chin. J. Phys. 57, 28–46 (2019)

    Article  Google Scholar 

  65. Y. Zulfiqar, J. Yuan, W. Yang, Z. Wang, J. Ye, Lu, Structural, dielectric and ferromagnetic behavior of (Zn, Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)

    Article  Google Scholar 

  66. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. Appl. Phys. 73, 348–366 (1993)

    Article  Google Scholar 

  67. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Effect of Mn-substitution on impedance spectroscopy and magnetic properties of Al-doped ZnO nanoparticles. Optik 31, 1–32 (2020)

    Google Scholar 

  68. F. Mizouri, N. Abdelmoula, D. Mezzane, H. Khemakhem, Impedance spectroscopy and conduction mechanism of multiferroic Bi0.8(Ba0.9Ca0.1)0.8F e0.8(Ti0.9Sn0.1)0.8O3. J. Alloys Compd. 763, 570–580 (2018)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of DGRST. They would like to thank Prof. Ali Khalfallah (University of Coimbra) and Prof. Maria Teresa Vieira (University of Coimbra) for their helpful contribution in this work.

Author information

Authors and Affiliations

Authors

Contributions

HS: methodology, investigation, writing–original draft, writing–review and editing. ZB: conceptualization, methodology, investigation, supervision, writing–original draft, writing–review and editing. PS: methodology. YH: methodology. DM: methodology. KK: methodology. NA: resources. HK: resources.

Corresponding author

Correspondence to H. Saadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadi, H., Benzarti, Z., Sanguino, P. et al. Improving the optical, electrical and dielectric characteristics of ZnO nanoparticles through (Fe + Al) addition for optoelectronic applications. Appl. Phys. A 128, 691 (2022). https://doi.org/10.1007/s00339-022-05847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05847-9

Keywords

Navigation