Skip to main content
Log in

Oxygen vacancy in GdOF: generation of reactive oxygen species under dark

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this manuscript, we have reported pro-oxidant activity of GdOF nanostructures under dark condition which primarily depends on morphology and defect structure. As examined from FTIR, Raman, and photoluminescence spectroscopy, defects are found to be neutral oxygen (\({\mathrm{V}}_{\mathrm{O}}\)) and singly charged oxygen (\({\mathrm{V}}_{\mathrm{O}}^{+}\)) vacancies. In order to check stability of GdOF, we have calculated vibration band structure, while electronic band structure has been calculated to get insight about band-to-band electronic transition and other electronic phenomena, specifically in determining pro-oxidant activity. Herein, our calculation confirms spin-polarized conduction band originating from Gd 5p states and spin-polarized valance band which consists of O 2p orbitals. Our calculation underestimates experimental band gap, but corroborates previously studied magnetic property of GdOF. As previous studies highlight GdOF as MRI and fluorescent contrast agent, thus present investigation on pro-oxidant activity of GdOF widens its scope in photodynamic therapy indicating its theranostic capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Chikamatsu, K. Kawahara, T. Shiina, T. Onozuka, T. Katayama, T. Hasegawa, ACS Omega 3, 13141–13145 (2018)

    Article  Google Scholar 

  2. H. Suo, X. Zhao, Z. Zhang, C. Guo, A.C.S. Appl, Mater. Interfaces 9, 43438–43448 (2017)

    Article  Google Scholar 

  3. T. Mori, K. Kajihara, K. Kanamura, Y. Toda, H. Hiramatsu, H. Hosono, J. Am. Chem. Soc. 135, 13080–13088 (2013)

    Article  Google Scholar 

  4. N. Matsukia, H. Fujiwara, J. Appl. Phys. 114, 043517 (2013)

    Article  Google Scholar 

  5. M. Kang, H.B. Kang, S. Parkb, H.S. Jang, Chem. Commun 55, 13350 (2019)

    Article  Google Scholar 

  6. D. Kim, J.R. Jeong, Y. Jang, J.S. Bae, I. Chung, R. Liang, D.K. Seo, S.J. Kim, J.C. Park, Phys. Chem. Chem. Phys. 21, 1737 (2019)

    Article  Google Scholar 

  7. S. Shi, Q. Shi, C. Cui, L. Wang, Y. Tiana, P. Huang, RSC Adv. 6, 91127 (2016)

    Article  ADS  Google Scholar 

  8. K. Zheng, Y. Liu, Z. Liu, Z. Chen, W. Qin, Dalton Trans. 42, 5159 (2013)

    Article  Google Scholar 

  9. C. Wang, L. Xu, J. Xu, D. Yang, B. Liu, S. Gai, F. He, P. Yang, Dalton Trans. 46, 12147 (2017)

    Article  Google Scholar 

  10. P.O. Maksimchuk, S.L. Yefimova, K.O. Hubenko, V.V. Omelaeva, N.S. Kavok, V.K. Klochkov, A.V. Sorokin, Y.V. Malyukin, J. Phys. Chem. C 124, 3843–3850 (2020)

    Article  Google Scholar 

  11. S. Podder, D. Chanda, A.K. Mukhopadhyay, A. De, B. Das, A. Samanta, J.G. Hardy, C.K. Ghosh, Inorg. Chem. 57, 12727–12739 (2018)

    Article  Google Scholar 

  12. J. Wang, Y. Shin, J.R. Paudel, J.D. Grassi, R.K. Sah, W. Yang, E. Karapetrova, A. Zaidan, V.N. Strocov, C. Klewe, P. Shafer, A.X. Gray, J.M. Rondinelli, S.J. May, Chem. Mater 33, 1811–1820 (2021)

    Article  Google Scholar 

  13. S.T. Hartman, S.B. Cho, R. Mishra, Inorg. Chem. 57, 10616–10624 (2018)

    Article  Google Scholar 

  14. V.L. Chevrier, G. Hautier, S.P. Ong, R.E. Doe, G. Ceder, Phys. Rev. B 87, 094118 (2013)

    Article  ADS  Google Scholar 

  15. J. Wang, B.M. Lefler, S.J. May, Inorg. Chem. 59, 9990–9997 (2020)

    Article  Google Scholar 

  16. T. Katayama, A. Chikamatsu, Y. Hirose, R. Takagi, H. Kamisaka, T. Fukumuraab, T. Hasegawa, J. Mater. Chem. C 2, 5350–5356 (2014)

    Article  Google Scholar 

  17. K. Oka, H. Hojo, M. Azuma, K. Oh-ishi. Chem. Mater. 28, 5554–5559 (2016)

    Article  Google Scholar 

  18. R.Q. Li, G.H. Yu, Y.M. Liang, N.N. Zhang, Y.L. Liu, S.C. Gan, J. Colloid Interface Sci. 460, 273 (2015)

    Article  ADS  Google Scholar 

  19. J.G. Li, X.D. Li, X.D. Sun, T. Ikegami, T. Ishigaki, Chem. Mater. 20, 2274 (2008)

    Article  Google Scholar 

  20. R. Li, H. Xiong, Y. Liang, Y. Liu, N. Zhang, S. Gan, New J. Chem. 40, 1792 (2016)

    Article  Google Scholar 

  21. Q. Zhao, B. Shao, W. Lu, W. Lv, M. Jiao, L. Zhaoa, H. You, Dalton Trans. 44, 3745 (2015)

    Article  Google Scholar 

  22. Y. Zhang, D.L. Geng, X.J. Kang, M.M. Shang, Y. Wu, X.J. Li, H.Z. Lian, Z.Y. Cheng, J. Lin, Inorg. Chem. 52, 12986 (2013)

    Article  Google Scholar 

  23. J. Holsa, E. Sailynoja, H. Rahiala, J. Valkonen, Polyhedron 16, 3421–3427 (1997)

    Article  Google Scholar 

  24. T. Grzyb, R.J. Wiglusz, V. Nagirnyi, A. Kotlov, S. Lis, Dalton Trans. 43, 6925–6934 (2014)

    Article  Google Scholar 

  25. S. Wu, W. Sun, J. Sun, Z.D. Hood, S. Yang, L. Sun, P.R.C. Kent, M.F. Chisholm, Chem. Mater. 30, 5128–5136 (2018)

    Article  Google Scholar 

  26. Y. Myung, J. Choi, F. Wu, S. Banerjee, E.H. Majzoub, J. Jin, S.U. Son, P.V. Braun, P. Banerjee, A.C.S. Appl, Mater. Inter. 9, 14187–14196 (2017)

    Article  Google Scholar 

  27. S. Weng, Z. Pei, Z. Zheng, J. Hu, P. Liu, A.C.S. Appl, Mater. Inter. 5, 12380–12386 (2013)

    Article  Google Scholar 

  28. D. Zhang, J. Li, Q. Wanga, Q. Wu, J. Mater. Chem. A 1, 8622–8629 (2013)

    Article  Google Scholar 

  29. K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, X. Yu, Cryst. Grow. Des. 12, 793 (2012)

    Article  Google Scholar 

  30. S. Das, U.K. Ghorai, R. Dey, C.K. Ghosh, M. Pal, Phys. Chem. Chem. Phys. 19, 22995–23006 (2017)

    Article  Google Scholar 

  31. S. Cao, C. Guo, Y. Lv, Y. Guo, Q. Liu, Nanotechnology 20, 275702 (2009)

    Article  Google Scholar 

  32. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, C. Shivakumara, R.P.S. Chakradhar, Spectro. Acta Part A: Mol. Biomol. Spec. 96, 532–540 (2012)

    Article  ADS  Google Scholar 

  33. S. Hazarika, D. Mohanta, Appl. Phys. A 123, 382 (2017)

    Article  ADS  Google Scholar 

  34. C. Tian, F. Pan, L. Wang, D. Ye, J. Sheng, J. Wang, J. Liu, J. Huang, H. Zhang, D. Xu, J. Qin, L. Hao, Y. Xia, H. Li, X. Tong, L. Wu, J.H. Chen, S. Jia, P. Cheng, J. Yang, Y. Zheng, Phys. Rev. B 104, 214410 (2021)

    Article  ADS  Google Scholar 

  35. L. Wang, D. Lv, F. Dong, X. Wu, N. Cheng, J. Scott, X. Xu, W. Hao, Y. Du, ACS Sustain. Chem. Eng. 7, 3010–3017 (2019)

    Article  Google Scholar 

  36. D.J. Keeble, J. Wiktor, S.K. Pathak, L.J. Phillips, M. Dickmann, K. Durose, H.J. Snaith, W. Egger, Nature Commun. 12, 5566 (2021)

    Article  ADS  Google Scholar 

  37. S. Das, U.K. Ghorai, R. Dey, C.K. Ghosh, Mrinal Pal. RSC Adv. 11, 335–348 (2021)

    Article  ADS  Google Scholar 

  38. V.L. Prasanna, R. Vijayaraghavan, Langmuir 31, 9155–9162 (2015)

    Article  Google Scholar 

  39. J. Gupta, D. Bahadur, ACS Omega 3, 2956–2965 (2018)

    Article  Google Scholar 

  40. P. Basu, J. Chakraborty, N. Ganguli, K. Mukherjee, K. Acharya, B. Satpati, S. Khamrui, S. Mandal, D. Banerjee, D. Goswami, P.M.G. Nambissan, K. Chatterjee, ACS Appl. Mater. & Inter. 11, 48179–48191 (2019)

    Article  Google Scholar 

  41. W. Zhang, Y. Li, J. Niu, Y. Chen, Langmuir 29, 4647–4651 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (TM) thanks CSIR, Govt. of India, while other (NH) thanks UGC, Govt. of India, for financial support during execution of their work. TM and NH have equal contribution to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Kumar Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, T., Haldar, N., Mondal, D. et al. Oxygen vacancy in GdOF: generation of reactive oxygen species under dark. Appl. Phys. A 128, 698 (2022). https://doi.org/10.1007/s00339-022-05825-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05825-1

Keywords

Navigation