Abstract
There is enormous interest in the use of graphene-based materials for energy storage. This article discusses the progress that has been accomplished in the development of chemical, electrochemical, and electrical energy storage systems using graphene. We summarize the theoretical and experimental work on graphene-based hydrogen storage systems, lithium batteries, and supercapacitors. Graphene could also be a two-dimensional (2D) sheet of carbon atoms in a very hexagonal (honeycomb) configuration. The carbon atoms in graphene are bonded with the SP2 hybrid. Graphene is the most recent member of the multidimensional graphite carbon family of materials. This family includes fullerene as zero-dimensional (0D) nanomaterials, carbon nanotubes as one-dimensional (1D) nanomaterials, and graphite as a three-dimensional (3D) material. The term graphene was first coined in 1986 to form the word graphite and a suffix (s) per polycyclic aromatic hydrocarbons. Additionally, to monolayer and bilayer graphene, graphene layers from 3 to 10 layers are called few-layer graphene and between 10 and 30 layers are called multiplayer graphene, thick graphene, or nanocrystals. Graphene is typically expected to contain only one layer, but there is considerable interest in researching bilayer and low-layer graphene. There are several methods for producing graphene, each with its own advantages and disadvantages. Graphene-based materials have great potential to be employed in supercapacitors due to their unique two-dimensional structure and inherent physical properties like excellent electrical conductivity and large area. This text summarizes recent developments within the sector of supercapacitors, including double-layer capacitors and quasi-capacitors. The pros and cons of using them in supercapacitors are discussed. Compared to traditional electrodes, graphene-based materials show some new properties and mechanisms within the method of energy storage and release. During this paper, we briefly describe carbon structures, particularly graphene, and also the history of graphene discovery, and briefly describe the synthesis methods, properties, characterization methods, and applications of graphene.
This is a preview of subscription content, access via your institution.














References
D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)
A.K. Geim, Graphene: status prospects. Science 324, 1530–1534 (2009)
M. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10, 20–27 (2007)
C.N.R. Rao, K. Biswas, K.S. Subrahmanyam, A. Govindaraj, Graphene, the New Nanocarbon. J. Mater. Chem. 19, 2457–2469 (2009)
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)
M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical. Sensing Biosensing. TrAC, Trends Anal. Chem. 29, 954–965 (2010)
Wikipedia®, Graphene http://en.wikipedia.org/wiki/Graphene
R. Heyrovska, Atomic structures of graphene, benzene methane with bond lengths as sums of the single, double resonance bond radii of carbon (2008)
A. K. Geim, P. Kim, Carbon wonderland. Scientific American (2008), pp. 90–97
W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of grapheneits applications: a review. Crit. Rev. Solid StateMater. Sci. 35, 52–71 (2010)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005)
H.P. Boehm, R. Setton, E. Stumpp, Nomenclature terminology of graphite intercalation compounds II. Carbon 24, 241–245 (1986)
S. Mouras, A. Hamwi, D. Djurado, J.C. Cousseins, Synthesis of first stage graphite intercalation compounds with fluorides. Revue de Chimie Minerale 24, 572–582 (1987)
D. Chandler, A New Approach to Water Desalination. MIT Tech Talk 53, 1–4 (2009)
Wikipedia®, Graphite intercalation compound. http://en.wikipedia.org/wiki/Graphite_intercalation_compound
B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. A 149, 249–259 (1859)
H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Das Adsorptionsverhalten Sehr Dunner Kohlenstoff-Folien. Zeitschrift fuer Anorganische und Allgemeine Chemie 316, 119–127 (1962)
A.K. Geim, Graphene prehistory. Physica 146, 014003 (2012)
C. Oshima, A. Nagashima, Ultra-thin epitaxial films of graphite hexagonal boron nitride on solid surfaces. J. Phys. Condensed Matter 9, 1–20 (1997)
K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Femtosecond carrier dynamics in graphite. Phys. Rev. B 42, 2842–2851 (1990)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)
D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angewandte Chemie Int. Edn. 48, 7752–7777 (2009)
Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors biosensors: a review. Electroanalysis 22, 1027–1036 (2010)
P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008)
Y.S. Dedkov, M. Fonin, U. Rüdiger, C. Laubschat, Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 100, 107602–107605 (2008)
X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality uniform graphene films on copper foils. Science 324, 1312–1314 (2009)
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)
A. Dato, V. Radmilovic, Z.H. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8, 2012–2016 (2008)
T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)
W.A. de Heera, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene. Solid State Commun. 143, 92–100 (2007)
X. Wang, L.J. Zhi, N. Tsao, Z. Tomovic, J. Li, K. Müllen, Transparent carbon films as electrodes in organic solar cells. Angewandte Chemie, Int. Edn. 47, 2990–2992 (2008)
M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvo thermal. Nat. Nanotechnol. 4, 30–33 (2009)
A. K. Geim, P. Kim, Carbon wonderland. Scientific American (2008), pp. 90–97
K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Femtosecond carrier dynamics in graphite. Phys. Rev. B 42, 2842–2851 (1990)
S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)
D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide. J. Ame. Chem. Soc. 130, 10697–10701 (2008)
D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)
C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011)
J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011)
D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)
L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai, Narrow graphene nanoribbons carbon nanotubes. Nature 458, 877–880 (2009)
K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, A study of graphenes prepared by different methods: characterization, properties solubilization. J. Mater. Chem. 18, 1517–1523 (2008)
A. Safavi, M. Tohidi, F. Aghakhani Mahyari, H. Shahbaazi, One -pot synthesis of large scale graphene nanosheets graphite–liquid crystal composite via thermal treatment. J. Mater. Chem. 22, 3825–3831 (2012)
W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of grapheneits applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)
J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic extrinsic performance s of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008)
A. Kuzmenko, E.V. Heumen, F. Carbone, D.V. Marel, universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401–117404 (2008)
N.M.R. Peres, The electronic properties of grapheneits bilayer. Vacuum 83, 1248–1252 (2009)
S.V. Morozov, K.S. Novoselov, F. Schedin, D. Jiang, A.A. Firsov, A.K. Geim, Two-dimensional electron hole gases at the surface of graphite. Phys. Rev. B 72, 201401 (2005)
S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)
D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)
Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)
A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)
M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Gu, Reduction of graphene oxide via l-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)
N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of. ionic-liquid- functionalized graphene sheets. Adv. Funct. Mater. 18, 1518–1525 (2008)
S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability surface free energy of graphene films. Langmuir 25, 11078–11081 (2009)
J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011)
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)
A.H. Castro Neto, K. Novoselov, Two-dimensional crystals: beyond graphene. Mater. Express 1, 10–17 (2011)
L. Karuppasamy, L. Gurusamy, G.J. Lee, J.J. Wu, Synthesis of metal/metal oxide supported reduced graphene oxide (RGO) for the applications of electrocatalysis and supercapacitors, in Graphene functionalization strategies. Carbon nanostructures. ed. by A. Khan, M. Jawaid, B. Neppolian, A. Asiri (Springer, Singapore, 2019)
C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10, 4863 (2010)
M. Pumera, Chem. Record 9, 211–23 (2009)
H. Pan, Nanoscale Res. Lett. 5, 654–68 (2010)
Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828–4850 (2011)
Y. Zhang, H. Feng, X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, L.S. Zhang, Int. J. Hydr. Energy 34, 255–261 (2009)
M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-based ultra capacitors. Nano Lett. 8(10), 3498–3502 (2008)
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C 113, 21269–21273 (2009)
Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, J. Phys. Chem. C 113, 21269–21273 (2009)
W. Lv, D.M. Tang, Y.B. He, C.H You, Z.Q. Shi, X.C. Chen, C.M. Chen, P.X. Hou, C. Liu, Q.H. Yang, ACS Nano, 3, 3730–3736 (2009).
Y.W. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118–2122 (2010)
Y.W. Zhu, M.D. Stoller, W.W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, ACS Nano 4, 1806–1812 (2010)
D.W. Wang, F. Li, Z.S. Wu, W. Ren, H.M. Cheng, Electro-chem. Commun. 11, 1729–1732 (2009)
Y. Si, E.T. Samulski, Chem. Mater. 20, 6792–6797 (2008)
D.-W. Wang, F. Li, Z.-S. Wu, W. Ren, H.-M. Cheng, Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers. Electrochem. Commun. 11(9), 1729–1732 (2009). https://doi.org/10.1016/j.elecom.2009.06.034
S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 6212–6218 (2010)
D. Pukazhselvan, V. Kumar, S.K. Singh, High capacity hydrogen storage: Basic aspects, new developments and milestones. Nano Energy 1(4), 566–589 (2012). https://doi.org/10.1016/j.nanoen.2012.05.004
S. Chen, J. Zhu, X. Wang, From graphene to metal oxide nanolamellas: A phenomenon of morphology transmission. ACS Nano 4(10), 6212–6218 (2010). https://doi.org/10.1021/nn101857y
H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, Z.-Q. Lei, Z.-Y. Zhang, Y.-Y. Yang, Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim Acta 55(28), 8974–8980 (2010). https://doi.org/10.1016/j.electacta.2010.08.048
M. Mahdavian, S. Ashhari, Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution. Electrochim Acta 55(5), 1720–1724 (2010). https://doi.org/10.1016/j.electacta.2009.10.055
Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). https://doi.org/10.1021/nn100740x
J.X. Hu, J. Gou, M. Yang, G.J. Omar, J.Y. Tan, S.W. Zeng, Y.P. Liu, K. Han, Z.S. Lim, Z. Huang, A.T.S. Wee, A. Ariando, Room-temperature colossal magnetoresistance in terraced single-layer graphene. Adv. Mater. 32, 2002201 (2020). https://doi.org/10.1002/adma.202002201
L. Viti, A.R. Cadore, X. Yang, A. Vorobiev, J.E. Muench, K. Watanabe, T. Taniguchi, J. Stake, A.C. Ferrari, M.S. Vitiello, Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics 10(1), 89–98 (2021). https://doi.org/10.1515/nanoph-2020-0255
H. Azak, Electrochemical hydrogen peroxide nanosensor using a reduced graphene oxide-poly(6-(4H-dithieno[3,2-b:2′,3′-d]pyrrol-4-yl)hexan-1-amine) hybrid-modified electrode. J. Appl. Polym. Sci. 137, 48538 (2020). https://doi.org/10.1002/app.48538
G. Han, Z. Chen, L. Cai, Y. Zhang, J. Tian, H. Ma, S. Fang, Poly(vinyl alcohol)/carboxyl graphene membranes for ethanol dehydration by pervaporation. Chem. Eng. Technol. 43, 574–581 (2020). https://doi.org/10.1002/ceat.201900149
M. Dehghan, M. Tahmasebipour, S. Ebrahimi, Design, fabrication, and characterization of an SLA 3D printed nanocomposite electromagnetic microactuator. Microelectron. Eng. 254, 111695 (2022)
M. Ameri Akhtiar Abadi, M. Masrournia, M. R. Abedi, Simultaneous extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes from aqueous solutions using magnetite–graphene oxide composites. Chem. Methodol. 5(1), 11–20 (2021). https://doi.org/10.22034/chemm.2021.118260
M. Motahharinia, H.A. Zamani, H. Karimi-Maleh, Electrochemical determination of doxorubicin in injection samples using paste electrode amplified with reduced graphene oxide/Fe3O4 nanocomposite and 1-Hexyl-3-methylimidazolium hexafluorophosphate. Chem. Methodol. 5(2), 107–113 (2021). https://doi.org/10.22034/chemm.2021.119678
A. Moghaddam, H.A. Zamani, H. Karimi-Maleh, A new sensing strategy for determination of tamoxifen using Fe3O4/graphene-ionic liquid nanocomposite amplified paste electrode. Chem. Methodol. 5(5), 373–380 (2021). https://doi.org/10.22034/chemm.2021.135727
V. Bakhtadze, V. Mosidze, T. Machaladze, N. Kharabadze, D. Lochoshvili, M. Pajishvili et al., Activity of Pd-MnOx/cordierite (Mg, Fe) 2Al4Si5O18) catalyst for carbon monoxide oxidation. Eur. Chem. Bull. 9(2), 75–77 (2020)
S. Rajeshkumar, A.K. Subramanian, R. Prabhakar, In vitro anti-inflammatory activity of silymarin/hydroxyapatite/chitosan nanocomposites and its cytotoxic effect using brine shrimp lethality assay: nanocomposite for biomedical applications. J. Popul. Therap. Clin. Pharmacol (2021). https://doi.org/10.47750/jptcp.2022.874
A.K. Netam, V.P. Bhargava, R. Singh, P. Sharma, Physico-chemical characterization of ayurvedic swarna bhasma by using SEM, EDAX, XRD and PSA. J. Complement. Med. Res. 12(2), 204–209 (2021). https://doi.org/10.5455/jcmr.2021.12.02.23
S.D. Wani, A. Mundada, A review: emerging trends in bionanocomposites. Int. J. Pharm. Res. Technol. 11(1), 1–8 (2021). https://doi.org/10.31838/ijprt/11.01.01
B. Jahanbin, A. Davoodnia, H. Behmadi, N. Tavakoli-Hoseini, Polymer support immobilized acidic ionic liquid: preparation and its application as catalyst in the synthesis of Hantzsch 1, 4-dihydropyridines. Bull. Korean Chem. Soc. 33(7), 2140–2144 (2012)
M. Baniasadi, H. Maaref, A. Dorzadeh, P. Mohammad Alizadeh, A sensitive SiO2@Fe3O4/GO nanocomposite modified ionic liquid carbon paste electrode for the determination of cabergoline. Iran. J. Chem. Chem. Eng. (IJCCE) 39(4), 11–22 (2020). https://doi.org/10.30492/ijcce.2020.105268.3508
S. Rayemi, F. Raeisi, Graphene oxide as a docking station for modern drug delivery system by Ulva lactuca species study its antimicrobial, anti-fungal and anti-blood cancer activity. Adv. Appl. NanoBio-Technol. 1(2), 53–62 (2020)
F.B. Salim, G.P. Shiaka, M. Muhammad, B. Nafisa, M.M. Surayya, A.Y. Sa’adatu, R. Gayus, A.M. Gumel, Influence of reaction temperature on bioethanol production by saccharomyces cerevisiae using cassava as substrate. Int. J. Sustain Energy Environ. Res. 10(1), 9–16 (2021). https://doi.org/10.18488/journal.13.2021.101.9.16
T.-H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M.O. Alassafi, F.E. Alsaadi, Y.-M. Chu, A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 20(1), 160–176 (2021)
T.-H. Zhao, M.-K. Wang, Y.-M. Chu, On the bounds of the perimeter of an ellipse. Acta Math. Sci. 42B(2), 491–501 (2022). https://doi.org/10.1007/s10473-022-0204-y
T.-H. Zhao, M.-K. Wang, G.-J. Hai, Y.-M. Chu, Landen inequalities for Gaussian hypergeometric function, Rev. R. Acad. Cienc. Exactas Físicas. Nat. Ser. A Mat. RACSAM, 116(1), Paper No. 53 (2022). https://doi.org/10.1007/s13398-021-01197-y.
M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y.-M. Chu, M.Y. Malik, Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420, Paper No. 126868 (2022). https://doi.org/10.1016/j.amc.2021.126868.
Y.-M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput. (2022). https://doi.org/10.1016/j.amc.2021.126883.
T.-H. Zhao, M. Ijaz Khan, Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7310
T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted H"{o}lder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 21(3), 413–426 (2021). https://doi.org/10.1007/s40315-020-00352-7
T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 15(2), 701–724 (2021). https://doi.org/10.7153/jmi-2021-15-50
T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM, 115(2), Paper No. 46 (2021). https://doi.org/10.1007/s13398-020-00992-3
H.-H. Chu, T.-H. Zhao, Y.-M. Chu, Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math. Slovaca 70(5), 1097–1112 (2020). https://doi.org/10.1515/ms-2017-0417
T.-H. Zhao, Z.-Y. He, Y.-M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 5(6), 6479–6495 (2020). https://doi.org/10.3934/math.2020418
T.-H. Zhao, M.-K. Wang, Y.-M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 5(5), 4512–4528 (2020). https://doi.org/10.3934/math.2020290
T.-H. Zhao, L. Shi, Y.-M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to H\"{o}lder means, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM, 114(2), Paper No. 96 (2020). https://doi.org/10.1007/s13398-020-00825-3.
T.-H. Zhao, B.-C. Zhou, M.-K. Wang, Y.-M. Chu, On approximating the quasi-arithmetic mean, J. Inequal. Appl., Paper No. 42 (2019). https://doi.org/10.1186/s13660-019-1991-0.
T.-H. Zhao, M.-K. Wang, W. Zhang, Y.-M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., Paper No. 251 (2018). https://doi.org/10.1186/s13660-018-1848-y.
Y.-M. Chu, T.-H. Zhao, Concavity of the error function with respect to H"{o}lder means. Math. Inequal. Appl. 19(2), 589–595 (2016). https://doi.org/10.7153/mia-19-43
T.-H. Zhao, Z.-H. Shen, Y.-M. Chu, Sharp power mean bounds for the lemniscate type means, Rev. R. Acad. Cienc. Exactas Físicas. Nat. Ser. A Mat. RACSAM, 115(4), Paper No. 175 (2021). https://doi.org/10.1007/s13398-021-01117-0.
M.-K. Wang, M.-Y. Hong, Y.-F. Xu, Z.-H. Shen, Y.-M. Chu, Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 14(1), 1–21 (2020). https://doi.org/10.7153/jmi-2020-14-01
H.-Z. Xu, W.-M. Qian, Y.-M. Chu, Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM, 116(1), Paper No. 21 (2022). https://doi.org/10.1007/s13398-021-01162-9.
K. Karthikeyan, P. Karthikeyan, H.M. Baskonus, K. Venkatachalam, Y.-M. Chu, Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7954
Y.-M. Chu, U. Nazir, M. Sohail, M. M. Selim, J-R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. (2021). https://doi.org/10.3390/fractalfract5030119.
S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y.-M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals. (2022). https://doi.org/10.1142/S0218348X22400266.
T.-H. Zhao, W.-M. Qian, Y.-M. Chu, Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 15(4), 1459–1472 (2021). https://doi.org/10.7153/jmi-2021-15-100
T.-H. Zhao, W.-M. Qian, Y.-M. Chu, On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. (2021). https://doi.org/10.1007/s13226-021-00016-9
S.N. Hajiseyedazizi, M.E. Samei, J. Alzabut, Y.-M. Chu, On multi-step methods for singular fractional q-integro-differential equations. Open Math. 19(1), 1378–1405 (2021). https://doi.org/10.1515/math-2021-0093
F. Jin, Z.-S. Qian, Y.-M. Chu, M. Rahman, On nonlinear evolution model for drinking behavior under Caputo–Fabrizio derivative. J. Appl. Anal. Comput. 12(2), 790–806 (2022). https://doi.org/10.11948/20210357.
S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y.-M. Chu, Some recent developments on dynamical h-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. Fractals (2022). https://doi.org/10.1142/S0218348X22401107.
F.-Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y.-M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals (2022). https://doi.org/10.1142/S0218348X22400515.
T.-H. Zhao, B.A. Bhayo, Y.-M. Chu, Inequalities for generalized Gr"{o}tzsch ring function. Comput. Methods Funct. Theory (2021). https://doi.org/10.1007/s40315-021-00415-3
S. Rashid, E. I. Abouelmagd, S. Sultana, Y.-M. Chu, New developments in weighted n-fold type inequalities via discrete generalized h-proportional fractional operators. Fractals (2022). https://doi.org/10.1142/S0218348X22400564.
Y.-M. Chu, S. Bashir, M. Ramzan, M.Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8234
W.-M. Qian, H.-H. Chu, M.-K. Wang, Y.-M. Chu, Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means. J. Math. Inequal. 16(1), 127–141 (2022). https://doi.org/10.7153/jmi-2022-16-10
T.-H. Zhao, H.-H. Chu, Y.-M. Chu, Optimal Lehmer mean bounds for the $n$th power-type Toader mean of $n=-1, 1, 3$. J. Math. Inequal. 16(1), 157–168 (2022). https://doi.org/10.7153/jmi-2022-16-12
T.-H. Zhao, M.-K. Wang, Y.-Q. Dai, Y.-M. Chu, On the generalized power-type Toader mean. J. Math. Inequal. 16(1), 247–264 (2022). https://doi.org/10.7153/jmi-2022-16-18
S. A. Iqbal, M. G. Hafez, Y.-M. Chu, C. Park, Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana–Baleanu fractional derivative. J. Appl. Anal. Comput. 12(2), 770–789 (2022). https://doi.org/10.11948/20210324.
E. Ashpazzadeh, Y.-M. Chu, M. S. Hashemi, M. Moharrami, M. Inc, Hermite multiwavelets representation for the sparse solution of nonlinear Abel's integral equation, Appl. Math. Comput., 427, Paper No. 127171 (2022). https://doi.org/10.1016/j.amc.2022.127171.
T. Gao, C. Li, Y. Zhang, M. Yang, D. Jia, T. Jin, Y. Hou, R. Li, Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol. Int. 131, 51–63 (2019)
Y. Zhang, C. Li, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, X. Zhang, Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J. Mater. Process. Technol. 232, 100–115 (2016)
S. Guo, C. Li, Y. Zhang, Y. Wang, B. Li, M. Yang, X. Zhang, G. Liu, Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J. Clean. Prod. 140, 1060–1076 (2017)
M. Yang, C. Li, Y. Zhang, D. Jia, R. Li, Y. Hou, H. Cao, J. Wang, Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram. Int. 45(12), 14908–14920 (2019)
J. Zhang, C. Li, Y. Zhang, M. Yang, D. Jia, G. Liu, Y. Hou, R. Li, N. Zhang, Q. Wu, H. Cao, Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J. Clean. Prod. 193, 236–248 (2018)
B. Li, C. Li, Y. Zhang, Y. Wang, D. Jia, M. Yang, Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin. J. Aeronaut. 29(4), 1084–1095 (2016)
D. Jia, C. Li, D. Zhang, Y. Zhang, X. Zhang, Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J. Nanopart. Res. 16(12), 1–15 (2014)
Y. Zhang, H.N. Li, C. Li, C. Huang, H.M. Ali, X. Xu, C. Mao, W. Ding, X. Cui, M. Yang, T. Yu, M. Jamil, M. K. Gupta, D. Jia, Z. Said. Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. (2021). https://doi.org/10.1007/s40544-021-0536-y
X. Cui, C.H. Li, W.F. Ding, Y. Chen, C. Mao, X.F. Xu, B. Liu, D.Z. Wang, H.N. Li, Y.B. Zhang, Z. Said, S. Debnath, M. Jamil, H.M. Ali, S. Sharma, Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2021.08.011
M. Liu, C. Li, Y. Zhang, Q. An, M. Yang, T. Gao, C. Mao, B. Liu, H. Cao, X. Xu, Z. Said, S. Debnath, M. Jamil, H.M. Ali, S. Sharma, Cryogenic minimum quantity lubrication machining: from mechanism to application. Front. Mech. Eng. 16(4), 649–697 (2021). https://doi.org/10.1007/s11465-021-0654-2
T. Gao, Y. Zhang, C. Li, Y. Wang, Q. An, Bo. Liu, Z. Said, S. Sharma, Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Sci. Rep. 11, 22535 (2021)
T. Gao, C. Li, Y. Wang, X. Liu, Q. An, H.N. Li, Y. Zhang, H. Cao, B. Liu, D. Wang, Z. Said, S. Debnath, M. Jamil, H.M. Ali, S. Sharma, Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos. Struct. 286, 115232 (2022)
Y.Y. Yang, Y.D. Gong, C.H. Li, X.L. Wen, J.Y. Sun, Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. J. Mater. Process. Technol. 291, 117023 (2021). https://doi.org/10.1016/j.jmatprotec.2020.117023
Z. Said, S. Arora, S. Farooq, L.S. Sundar, C. Li, A. Allouhi, Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: academic insights and perspectives. Sol. Energy Mater. Sol. Cells 236, 111504 (2022)
A. Ejaz, H. Babar, H.M. Ali, F. Jamil, M.M. Janjua, I.R. Fattah, Z. Said, C. Li, Concentrated photovoltaics as light harvesters: outlook, recent progress, and challenges. Sustain. Energy Technol. Assess. 46, 101199 (2021)
M. Yang, C. Li, Y. Zhang, D. Jia, R. Li, Y. Hou, H. Cao, Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int. J. Adv. Manufact. Technol. 102(5), 2617–2632 (2019)
M. Salimi, V. Pirouzfar, E. Kianfar, Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295, 215–226 (2017). https://doi.org/10.1007/s00396-016-3998-0
E. Kianfar, Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ. J. Appl. Chem. 91, 1711–1720 (2018). https://doi.org/10.1134/S1070427218100208
E. Kianfar, Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russ. J. Appl. Chem. 92, 1094–1101 (2019). https://doi.org/10.1134/S1070427219080068
E. Kianfar, M. Salimi, F. Kianfar, M. Kianfar, S.A.H. Razavikia, CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromol. Res. 27, 83–89 (2019). https://doi.org/10.1007/s13233-019-7009-4
E. Kianfar, Ethylene to propylene over zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ. J. Appl. Chem. 92, 933–939 (2019). https://doi.org/10.1134/S1070427219070085
E. Kianfar, M. Shirshahi, F. Kianfar, F. Kianfar, Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. SILICON 10, 2617–2625 (2018). https://doi.org/10.1007/s12633-018-9798-z
M. Salimi, V. Pirouzfar, E. Kianfar, Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polym. Sci. Ser. A 59, 566–574 (2017). https://doi.org/10.1134/S0965545X17040071
F. Kianfar, E. Kianfar, Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J. Inorg. Organomet. Polym. 29, 2176–2185 (2019). https://doi.org/10.1007/s10904-019-01177-1
E. Kianfar, R. Azimikia, S.M. Faghih, Simple and strong dative attachment of α-diimine nickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catal. Lett. 150, 2322–2330 (2020). https://doi.org/10.1007/s10562-020-03116-z
E. Kianfar, Nanozeolites: synthesized, properties, applications. J. Sol-Gel Sci. Technol. 91, 415–429 (2019). https://doi.org/10.1007/s10971-019-05012-4
H. Liu, E. Kianfar, Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal Lett 151, 787–802 (2021). https://doi.org/10.1007/s10562-020-03333-6
E. Kianfar, Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Technol 91, 415–429 (2019). https://doi.org/10.1007/s10971-019-05012-4
E. Kianfar, M. Salimi, V. Pirouzfar, B. Koohestani, Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int. J. Appl. Ceram. Technol. 15, 734–741 (2018). https://doi.org/10.1111/ijac.12830
E. Kianfar, M. Salimi, V. Pirouzfar, B. Koohestani, Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. Int. J. Chem. Reactor Eng. 16(7), 20170229 (2018). https://doi.org/10.1515/ijcre-2017-0229
E. Kianfar, Comparison and assessment of Zeolite Catalysts performance Dimethyl ether and light olefins production through methanol: a review. Rev. Inorg. Chem. 39, 157–177 (2019)
E. Kianfar, M. Salimi, A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: advances in chemistry research, vol 59: Edition: James C. Taylor Chapter: 1 (Nova Science Publishers, Inc., New York, 2020)
E. Kianfar, A. Razavi, Zeolite catalyst based selective for the process MTG: a review: In book: Zeolites: advances in research and applications, Edition: Annett Mahler Chapter: 8 (Nova Science Publishers, Inc., New York, 2020).
E. Kianfar, Zeolites: properties, applications, modification and selectivity: In book: zeolites: advances in research and applications, Edition: Annett Mahler Chapter: 1 (Nova Science Publishers, Inc., New York, 2020)
E. Kianfar, S. Hajimirzaee, S.S. Musavian, A.S. Mehr, Zeolite-based catalysts for methanol to gasoline process: a review. Microchem. J. 104822 (2020)
E. Kianfar, M. Baghernejad, Y. Rahimdashti, Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biol. Forum. 7, 1671–1685 (2015)
E. kianfar, Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Lambert Academic Publishing. 1–80 (2020). ISBN: 978-613-9-81541-8.
E. Kianfar, V. Pirouzfar, H. Sakhaeinia, An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. J. Taiwan Inst. Chem. Eng. 80, 954–962 (2017)
E. Kianfar, C. Viet, Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review. J. Market. Res. 10, 1437–1461 (2021)
S.S.N. Mousavian, P. Faravar, Z. Zarei, R. Zimikia, M.G. Monjezi, E. Kianfar, Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J. Environ. Chem. Eng. 8(4), 103946 (2020)
Z. Yang, L. Zhang, Y. Zhou, H. Wang, L. Wen, E. Kianfar, Investigation of effective parameters on SAPO-34 Nano catalyst the methanol-to-olefin conversion process: a review. Rev. Inorg. Chem. 40(3), 91–105 (2020). https://doi.org/10.1515/revic-2020-0003
C. Gao, J. Liao, Lu. Jingqiong, J. Ma, E. Kianfar, The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. Rev. Inorg. Chem. (2020). https://doi.org/10.1515/revic-2020-0007
E. Kianfar, M. Salimi, B. Koohestani, Zeolite CATALYST: a review on the production of light olefins. Lambert Academic Publishing. 1–116 (2020). ISBN:978-620-3-04259-7
E. Kianfar, Investigation on catalysts of “Methanol to light Olefins”. Lambert Academic Publishing. 1–168 (2020). ISBN: 978-620-3-19402-9
E. Kianfar, Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology. MedDocs Publishers. vol. 5, Chapter 3, pp. 16–21 (2020)
E. Kianfar, Catalytic properties of nanomaterials and factors affecting it importance & applications of nanotechnology. MedDocs Publishers. Vol. 5, Chapter 4, pp. 22–25 (2020)
E. Kianfar, Introducing the application of nanotechnology in lithium-ion battery importance & applications of nanotechnology, MedDocs Publishers. Vol. 4, Chapter 4, pp. 1–7 (2020)
E. Kianfar, H. Mazaheri, Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chem. Eng. 1, 83–91 (2020)
E. Kianfar, Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chem. Eng. 1, 69–74 (2020)
E. Kianfar, M. Salimi, B. Koohestani, Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chem. Eng. 1, 75–82 (2020)
E. Kianfar, An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chem. Eng. 1, 92–103 (2020)
E. Kianfar, S. Mafi, Ionic liquids: properties, application, and synthesis. Fine Chem. Eng. 2, 22–31 (2020)
S.M. Faghih, E. Kianfar, Modeling of fluid bed reactor of ethylene dichloride production in Abadan Petrochemical based on three-phase hydrodynamic model. Int. J. Chem. React. Eng. 16, 1–14 (2018)
E. Kianfar, H. Mazaheri, Methanol to gasoline: a sustainable transport fuel, in book: advances in chemistry research, vol 66, Edition: James C. Taylor Chapter: 4 (Nova Science Publishers, Inc., New York, 2020)
E. Kianfar, A comparison and assessment on performance of zeolite catalyst based selective for the process methanol to gasoline: a review. In advances in chemistry research, Vol. 63, Chapter 2 (Nova Science Publishers, Inc., New York, 2020
E. Kianfar, S. Hajimirzaee, S. M. Faghih, et al, Polyvinyl chloride + nanoparticles titanium oxide membrane for separation of O2/N2. Advances in Nanotechnology (Nova Science Publishers, Inc, New York, 2020)
E. Kianfar, Synthesis of characterization Nanoparticles isophthalic acid / aluminum nitrate (CAU-10-H) using method hydrothermal. Advances in Chemistry Research (Nova Science Publishers, Inc, New York, 2020)
E. Kianfar, CO2 capture with ionic liquids: a review. Advances in Chemistry Research. Volume 67 (Nova Science Publishers, Inc., New York, 2020)
E. Kianfar, Enhanced light olefins production via methanol dehydration over promoted SAPO-34. Advances in Chemistry Research, volume 63, Chapter: 4 (Nova Science Publishers, Inc., New York, 2020)
E. Kianfar, Gas hydrate: applications, structure, formation, separation processes, Thermodynamics. Advances in Chemistry Research. Volume 62, Edition: James C. Taylor. Chapter: 8 (Nova Science Publishers, Inc., New York, 2020)
M. Kianfar, F. Kianfar, E. Kianfar, The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am. J. Oil Chem. Technol. 4(1), 29–44 (2016)
E. Kianfar, The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am. J. Oil Chem. Technol. 4(1), 27–42 (2016)
F. Kianfar, S. Reza, M. Moghadam, E. Kianfar, Energy optimization of ilam gas refinery unit 100 by using HYSYS refinery software. Indian J. Sci. Technol. 8(S9), 431–436 (2015)
E. Kianfar, Production and identification of vanadium oxide nanotubes. Indian J. Sci. Technol. 8(S9), 455–464 (2015)
F. Kianfar, S. Reza, M. Moghadam, E. Kianfar, Synthesis of Spiro Pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst. Indian J. Sci. Technol. 8(11), 68669 (2015)
S. Hajimirzaee, A. S. Mehr, E. Kianfar, Modified ZSM-5 zeolite for conversion of LPG to aromatics. Polycyclic Aromatic Compounds (2020). https://doi.org/10.1080/10406638.2020.1833048.
E. Kianfar, Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Pet. Chem. 61, 527–537 (2021). https://doi.org/10.1134/S0965544121050030
X. Huang, Y. Zhu, E. Kianfar, Nano Biosensors: properties, applications and electrochemical techniques. J. Mater. Res. Technol. 12, 1649–1672 (2021). https://doi.org/10.1016/j.jmrt.2021.03.048
E. Kianfar, Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnol 19, 159 (2021). https://doi.org/10.1186/s12951-021-00896-3
E. Kianfar, Magnetic nanoparticles in targeted drug delivery: a review. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-021-05932-9
R. Syah, M. Zahar, E. Kianfar, Nanoreactors: properties, applications and characterization. Int. J. Chem. Reactor Eng. (2021). https://doi.org/10.1515/ijcre-2021-0069
H.S. Majdi, Z.A. Latipov, V. Borisov et al., Nano and battery anode: a review. Nanoscale Res. Lett. 16, 177 (2021). https://doi.org/10.1186/s11671-021-03631-x
D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by sol–gel method: synthesis and application. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/5102014
M.J. Ansari, M.M. Kadhim, B.A. Hussein et al., Synthesis and stability of magnetic nanoparticles. BioNanoSci. (2022). https://doi.org/10.1007/s12668-022-00947-5
S. Chupradit, M. Kavitha, W. Suksatan, M. J. Ansari, Z. I. Al Mashhadani, M. M. Kadhim, Y. F. Mustafa, S. S. Shafik, E. Kianfar, Morphological control: properties and applications of metal nanostructures. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/1971891.
O.D. Salah Aldeen, M.Z. Mahmoud, H.S. Majdi, D.A. Mutlak, K. Fakhriddinovich Uktamov, Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from naphtha. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/6165180
A. Suryatna, I. Raya, L. Thangavelu, F.R. Alhachami, M.M. Kadhim, U.S. Altimari, Z.H. Mahmoud, Y.F. Mustafa, E. Kianfar, A review of high-energy density lithium-air battery technology: investigating the effect of oxides and nanocatalysts. J. Chem. (2022). https://doi.org/10.1155/2022/2762647
W.K. Abdelbasset, S.A. Jasim, D.O. Bokov et al., Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett. (2022). https://doi.org/10.1007/s42823-022-00338-6
S.A. Jasim, M.M. Kadhim, V. Kn et al., Molecular junctions: introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Braz. J. Phys. 52, 31 (2022). https://doi.org/10.1007/s13538-021-01033-z
N.D. Trung, D.T.N. Huy, M. Opulencia et al., Conductive gels: properties and applications of nanoelectronics. Nanoscale Res. Lett. 17, 50 (2022). https://doi.org/10.1186/s11671-022-03687-3
J. Shi, Y. Zhao, J. He, T. Li, F. Zhu, W. Tian, X. Liu, Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Appl. Energy Mater. (2022). https://doi.org/10.1021/acsaem.1c04017
J. He, X. Liu, Y. Zhao, H. Du, T. Zhang, J. Shi, Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification. ACS Appl. Electr. Mater. (2022). https://doi.org/10.1021/acsaelm.1c01129
X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588
X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. (Weinheim) 28(45), 9979–9985 (2016). https://doi.org/10.1002/adma.201603735
B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. (Weinheim) 29(19), 1700519 (2017). https://doi.org/10.1002/adma.201700519
M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4
Z. Ma, L. Zhang, X. Ma, F. Shi, A dual strategy for synthesizing crystal plane/defect co-modified BiOCl microsphere and photodegradation mechanism insights. J. Colloid Interface Sci. 617, 73–83 (2022). https://doi.org/10.1016/j.jcis.2022.02.082
G. Wang, D. Liu, S. Fan, Z. Li, J. Su, High-k erbium oxide film prepared by sol-gel method for low-voltage thin-film transistor. Nanotechnology 32(21), 215202 (2021). https://doi.org/10.1088/1361-6528/abe439
H. Yan, M. Zhao, X. Feng, S. Zhao, X. Zhou, S. Li, C. Yang, PO43- coordinated robust single-atom platinum catalyst for selective polyol oxidation. Angewandte Chemie-Int. Edn. (2022). https://doi.org/10.1002/ange.202116059
W. Lai, W. Wong, Use of graphene-based materials as carriers of bioactive agents. Asian J. Pharm. Sci. 16(5), 577–588 (2021). https://doi.org/10.1016/j.ajps.2020.11.004
S.R. Obireddy, W. Lai, Multi-component hydrogel beads incorporated with reduced graphene oxide for pH-responsive and controlled co-delivery of multiple agents. Pharmaceutics 13(3), 313 (2021). https://doi.org/10.3390/pharmaceutics13030313
X. Lang, T. Wang, Z. Wang, L. Li, C. Yao, K. Cai, Reasonable design of a V2O5-x/TiO2 active interface structure with high polysulfide adsorption energy for advanced lithium-sulfur batteries. Electrochimica acta 403, 139723 (2022). https://doi.org/10.1016/j.electacta.2021.139723
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)
M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)
Y. He, L. Huang, J.S. Cai, X.M. Zheng, S.G. Sun, Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochim Acta. 55, 1140–1144 (2010). https://doi.org/10.1016/j.electacta.2009.10.014
W. Wei, J. Wang, L. Zhou, J. Yang, B. Schumann, Y. Nuli, CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochem. Commun. 13, 399–402 (2011). https://doi.org/10.1016/j.elecom.2011.02.001
S.W. Kim, J. Ryu, C.B. Park, K. Kang, Carbon nanotube-amorphous FePO4core-shell nanowires as cathode material for Li ion batteries. Chem. Commun. 46, 7409–7411 (2010). https://doi.org/10.1039/c0cc02524k
Y. Chen, L. Du, P. Yang, P. Sun, X. Yu, W. Mai, Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J. Power Sources 287, 68–74 (2015). https://doi.org/10.1016/J.JPOWSOUR.2015.04.026
J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu et al., High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/J.NANOEN.2016.07.008
H. Choi, H. Kim, S. Hwang, W. Choi, M. Jeon, Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrodeSol. Energy Mater. Sol. Cells. 95, 323–325 (2011). https://doi.org/10.1016/J.SOLMAT.2010.04.044
C.-T. Hsieh, B.-H. Yang, J.-Y. Lin, One- and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon N. Y. 49, 3092–3097 (2011). https://doi.org/10.1016/J.CARBON.2011.03.031
Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano (2011). https://doi.org/10.1021/nn2006249
H. Wang, L.F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010). https://doi.org/10.1002/celc.201700093
Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11, 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
S. Casaluci, M. Gemmi, V. Pellegrini, A. Di Carlo, F. Bonaccorso, Graphene-based large area dye-sensitized solar cell modules. Nanoscale 8, 5368–5378 (2016). https://doi.org/10.1039/c5nr07971c
H.Y. Wang, H. Hui, Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5, 8182–8188 (2012). https://doi.org/10.1016/j.matlet.2012.07.006
G.S. Han, Y.H. Song, Y.U. Jin, J.W. Lee, N.G. Park, B.K. Kang et al., Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Appl. Mater. Interfaces 7, 23521–23526 (2015). https://doi.org/10.1021/acsami.5b06171
G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai et al., Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676–2682 (2014). https://doi.org/10.1002/adma.201304756
L. Yu, L. Hu, B. Anasori, Y. Liu, Q. Zhu, P. Zhang et al., MXene-bonded activated carbon as a flexible. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
Z. Wang, J.J. Han, N. Zhang et al., Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. J Solid State Electrochem 23, 3373–3382 (2019). https://doi.org/10.1007/s10008-019-04435-x
L. Feng, S. Zhang, Z. Liu, Graphene based gene transfection. Nanoscale 3, 1252–1257 (2011)
C. Chen, P.J. Perdomo, M. Fernandez, A. Barbeito, C. Wang, Porous NiO/graphene composite thin films as high-performance anodes for lithium-ion batteries. J. Energy Storage 8, 198–204 (2016). https://doi.org/10.1016/J.EST.2016.08.008
R.B. Ambade, S.B. Ambade, N.K. Shrestha, Y.C. Nah, S.H. Han, W. Lee et al., Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem. Commun. 49, 2308–2310 (2013). https://doi.org/10.1039/c3cc00065f
J. Zhang, X. Yang, Y. He, Y. Bai, L. Kang, H. Xu et al., δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J. Mater. Chem. A. 4, 9088–9096 (2016). https://doi.org/10.1039/c6ta02989b
M.E. Speer, M. Kolek, J.J. Jassoy, J. Heine, M. Winter, P.M. Bieker et al., Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 51, 15261–15264 (2015). https://doi.org/10.1039/c5cc04932f
W.A. Maza, A.J. Haring, S.R. Ahrenholtz, C.C. Epley, S.Y. Lin, A.J. Morris, Ruthenium(II)-polypyridyl zirconium(IV) metal-organic frameworks as a new class of sensitized solar cells. Chem. Sci. 7, 719–727 (2015). https://doi.org/10.1039/c5sc01565k
Y. He, L. Huang, J.S. Cai, X.M. Zheng, S.G. Sun, Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium batteries. Electrochim. Acta. 55, 1140–1144 (2010). https://doi.org/10.1016/j.electacta.2009.10.014.
H.-J. Shin, S.S. Jeon, S.S. Im, CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synth. Met. 161, 1284–1288 (2011). https://doi.org/10.1016/J.SYNTHMET.2011.04.024
E. Shi, L. Zhang, Z. Li, P. Li, Y. Shang, Y. Jia et al., TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2, 8–12 (2012). https://doi.org/10.1038/srep00884
X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton et al., High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012). https://doi.org/10.1021/nl204414u
R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z. Sun, S.X. Dou et al., Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A. 2, 19848–19854 (2014). https://doi.org/10.1039/c4ta04277h
Y.C. Jeong, J.H. Kim, S.H. Kwon, J.Y. Oh, J. Park, Y. Jung et al., Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries. J. Mater. Chem. A. 5, 23909–23918 (2017). https://doi.org/10.1039/c7ta08153g
Q. Luo, H. Ma, F. Hao, Q. Hou, J. Ren, L. Wu et al., Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv. Funct. Mater. 27, 1–8 (2017). https://doi.org/10.1002/adfm.201703068
A. Shrestha, M. Batmunkh, C.J. Shearer, Y. Yin, G.G. Andersson, J.G. Shapter et al., Nitrogen-doped CNx/CNTs heteroelectrocatalysts for highly efficient dye-sensitized solar cells. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201602276
J. Gong, Z. Zhou, K. Sumathy, H. Yang, Q. Qiao, Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4945375
Author information
Authors and Affiliations
Contributions
ODS, HS, RS, RMRP, MAT, ATJ, SEI, ATH, LABA, EK: investigation, concept and design, experimental studies, writing—original draft, reviewing and editing. All authors read and approved the manuscript. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Research involving humans and animals statement
Omar Dheyauldeen Salahdin, Hamidreza Sayadi, Reena Solanki, Rosario Mireya Romero Parra, Mohaimen Al-Thamir, Abduladheem Turki Jalil, Samar Emad Izzat, Ali Thaeer Hammid, Luis Andres Barboza Arenas, Ehsan Kianfar: Investigation, concept and design, experimental studies, writing — original draft, reviewing and editing.
Ethics approval and consent to participate
We consider that the submitted is original and unique work and it has not been submitted to another journal simultaneity. The work is a single study and it is not into several parts, and results are presented clearly, honestly, and without, falsification or inappropriateness of the data manipulation. The study submitted is part of my doctoral thesis. The authors declare no conflict of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results. This work does not contain any studies with human participants or animals performed by any of the authors. Finally, additional informed consent was obtained from all individual participants for whom identifying information is included in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Salahdin, O.D., Sayadi, H., Solanki, R. et al. Graphene and carbon structures and nanomaterials for energy storage. Appl. Phys. A 128, 703 (2022). https://doi.org/10.1007/s00339-022-05789-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-022-05789-2
Keywords
- Graphene
- Carbon structures
- Characterization
- Chemical vapor deposition
- Epitaxial growth