Skip to main content
Log in

Dual-band flat lens with negative index for silicon photonics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have designed a photonic crystal flat lens with negative index operating at \(\lambda\) = 1.55\(\mu\)m for silicon photonics. It focuses an incident plane wave while it collimates the wave emitted by a point source. Its focal length is 4\(\lambda\), and it is 4.4\(\lambda\) thick. Thus, it acts as a convex lens. It consists of a graded photonic crystal and its operating frequency is set in the second band of photonic crystals, so that the effective index is negative. It also operates in the first band, where it also focuses a plane wave and collimates a point source wave. In both cases, the resolution is subwavelength. It is at the wavelength scale and it has been designed so as it can be fabricated via the silicon-on-insulator CMOS technology. This compact photonic integrated circuit is for optical communications applications, optical interconnects, sensing and lab-on-chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Milojkovic, S. Tompkins, R. Athale, Special section guest editorial: Gradient index optics. Opt. Eng. 52(11), 112101–112101 (2013). https://doi.org/10.1117/1.OE.52.11.112101

    Article  ADS  Google Scholar 

  2. P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar, Imaging by flat lens using negative refraction. Nature 426(6965), 404–404 (2003). https://doi.org/10.1038/426404a

    Article  ADS  Google Scholar 

  3. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, Optical near-field microscopy of light focusing through a photonic crystal flat lens. Phys. Rev. Lett. 101, 073901 (2008). https://doi.org/10.1103/PhysRevLett.101.073901

    Article  ADS  Google Scholar 

  4. Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies. Phys. Rev. Lett. 95, 153901 (2005). https://doi.org/10.1103/PhysRevLett.95.153901

    Article  ADS  Google Scholar 

  5. E. Schonbrun, M. Tinker, W. Park, J.-B. Lee, Negative refraction in a si-polymer photonic crystal membrane. IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005). https://doi.org/10.1109/LPT.2005.846477

    Article  ADS  Google Scholar 

  6. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, S. Anand, Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett. 93, 073902 (2004). https://doi.org/10.1103/PhysRevLett.93.073902

    Article  ADS  Google Scholar 

  7. Q. Wu, J.M. Gibbons, W. Park, Graded negative index lens by photonic crystals. Opt. Express 16(21), 16941–16949 (2008). https://doi.org/10.1364/OE.16.016941

    Article  ADS  Google Scholar 

  8. F. Gaufillet, E. Akmansoy, Graded photonic crystals for graded index lens. Optics Commun. 285(10–11), 2638–2641 (2012). https://doi.org/10.1016/j.optcom.2012.01.05

    Article  ADS  Google Scholar 

  9. F. Gaufillet, E. Akmansoy, Design of flat graded index lenses using dielectric Graded Photonic Crystals. Opt. Mater. 47, 555–560 (2015). https://doi.org/10.1016/j.optmat.2015.06.03

    Article  ADS  Google Scholar 

  10. F. Gaufillet, E. Akmansoy, Maxwell fish-eye and half-Maxwell fish-eye based on graded photonic crystals. IEEE Photonics J. 10(3), 1–10 (2018). https://doi.org/10.1109/JPHOT.2018.2835157

    Article  Google Scholar 

  11. F. Gaufillet, E. Akmansoy, Graded photonic crystals for luneburg lens. IEEE Photonics J. (2016). https://doi.org/10.1109/JPHOT.2016.252126

    Article  Google Scholar 

  12. F. Gaufillet, É. Akmansoy, Metallic graded photonic crystals for graded index lens. Appl. Phys. A 109(4), 1071–1074 (2012). https://doi.org/10.1007/s00339-012-7386-4

    Article  ADS  Google Scholar 

  13. E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, J.-M. Lourtioz, Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect. Appl. Phys. Lett. 92(13), 133501 (2008). https://doi.org/10.1063/1.290168

    Article  ADS  Google Scholar 

  14. M. Notomi, Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696–10705 (2000). https://doi.org/10.1103/PhysRevB.62.10696

    Article  ADS  Google Scholar 

  15. E. Centeno, D. Cassagne, Graded photonic crystals. Opt. Lett. 30(17), 2278–2280 (2005). https://doi.org/10.1364/OL.30.002278

    Article  ADS  Google Scholar 

  16. S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001). https://doi.org/10.1364/OE.8.000173

    Article  ADS  Google Scholar 

  17. M. Qiu, Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81(7), 1163–1165 (2002). https://doi.org/10.1063/1.1500774

    Article  ADS  Google Scholar 

  18. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, Superprism phenomena in photonic crystals: Toward microscale lightwave circuits. J. Lightwave Technol. 17(11), 2032 (1999)

    Article  ADS  Google Scholar 

  19. A.O. Pinchuk, G.C. Schatz, Metamaterials with gradient negative index of refraction. J. Opt. Soc. Am. A 24(10), 39–44 (2007). https://doi.org/10.1364/JOSAA.24.000A39

    Article  ADS  Google Scholar 

  20. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Subwavelength imaging in photonic crystals. Phys. Rev. B 68, 045115 (2003). https://doi.org/10.1103/PhysRevB.68.045115

    Article  ADS  Google Scholar 

  21. J. Xie, J. Wang, R. Ge, B. Yan, E. Liu, W. Tan, J. Liu, Multiband super-resolution imaging of graded-index photonic crystal flat lens. J. Phys. D Appl. Phys. 51(20), 205103 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

This work has profited from no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Akmansoy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests, nor competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Q., Akmansoy, É. Dual-band flat lens with negative index for silicon photonics. Appl. Phys. A 128, 627 (2022). https://doi.org/10.1007/s00339-022-05760-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05760-1

keywords

Navigation