Skip to main content
Log in

A simple strategy towards construction of fluorine-free superhydrophobic aluminum alloy surfaces: self-cleaning, anti-corrosion and anti-frost

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work introduced a simple method to fabricate a superhydrophobic aluminum alloy surface based on a combination strategy of chemical etching using HCl/H2O2 mixture and modification by polydimethylsiloxane (PDMS). The chemical composition, morphology and hydrophobicity of the surface were characterized by FTIR, EDS, 3D optical profiler, SEM and contact angle system. The results show that the fabricated micro/nano-scale hierarchical structures after being modified with PDMS can results in a good anti-adhesion and resistance to wettability with a water contact angle as high as 161° and a sliding angle of 7°. Also, the superhydrophobic surface displayed excellent thermal stability and self-cleaning performance. Furthermore, electrochemical tests indicated that the superhydrophobic surface was endowed with good corrosion resistance property. The prepared surface was demonstrated to have a commendable resistance to corrosion, exhibiting a lower corrosion current density of 2.5 × 10–9 A/cm2 and a higher corrosion potential of − 0.58 V. Compared to original aluminum alloy plate, the superhydrophobic surface had an ability to delay icing with the obviously decreased frosting area. To a certain extent, these investigations opened up possibilities for applications of superhydrophobic surface, especially in the fields of self-cleaning, anti-corrosion and anti-frost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.Y. Li, Y. Li, J. Wang, Y.G. Nan, B.H. Ma, Z.L. Liu, J.X. Gu, Chem. Eng. J. 290, 82 (2016)

    Article  Google Scholar 

  2. Y. Zheng, H. Bai, Z. Huang, X. Tian, F.Q. Nie, Y. Zhao, J. Zhai, L. Jiang, Nature 463, 640–643 (2010)

    Article  ADS  Google Scholar 

  3. J.W. Sun, H.C. Bi, H.Y. Jia, S. Su, H. Dong, X. Xie, L.T. Sun, J. Clean. Prod. 244, 118814 (2020)

    Article  Google Scholar 

  4. M.P. Yang, W.Q. Liu, L.Y. Liang, C. Jiang, C.H. Liu, Y.K. Xie, H.Y. Shi, F.Y. Zhang, K. Pi, Cellulose 27, 2847–2857 (2020)

    Article  Google Scholar 

  5. G.B. Hwang, A. Patir, K. Page, Y. Lu, E. Allan, I.P. Parkin, Nanoscale 9, 7588–7594 (2017)

    Article  Google Scholar 

  6. M. Ruan, W. Li, B.S. Wang, B.W. Deng, F.M. Ma, Z.L. Yu, Langmuir 29, 8482–8491 (2013)

    Article  Google Scholar 

  7. J. Zhu, X. Hu, Mater. Lett. 190, 115–118 (2017)

    Article  Google Scholar 

  8. D. Choi, J. Yoo, S.M. Park, S.K. Dong, Appl. Surf. Sci. 393, 449–456 (2017)

    Article  ADS  Google Scholar 

  9. M. Manca, A. Cannavale, M.L. De, A.S. Aricò, R. Cingolani, G. Gigli, Langmuir 25, 6357–6362 (2009)

    Article  Google Scholar 

  10. A.V. Rao, S.S. Latthe, S.A. Mahadik, C. Kappenstein, Appl. Surf. Sci. 257, 5772–5776 (2011)

    Article  ADS  Google Scholar 

  11. T. Hang, A.M. Hu, H.Q. Ling, M. Li, D.L. Mao, Appl. Surf. Sci. 256, 2400–2404 (2010)

    Article  ADS  Google Scholar 

  12. J. Li, F. Du, X.L. Liu, Z.H. Jiang, L.Q. Ren, J. Bionic Eng. 8, 369–374 (2011)

    Article  Google Scholar 

  13. H. Wang, D. Dai, X.D. Wu, Appl. Surf. Sci. 254, 5599–5601 (2008)

    Article  ADS  Google Scholar 

  14. S.D. Lee, G.H. Hsiue, C.Y. Kao, P.C.T. Chang, Biomaterials 17, 587–595 (1996)

    Article  Google Scholar 

  15. J.H. Park, K.D. Park, Y.H. Bae, Biomaterials 20, 943–953 (1999)

    Article  Google Scholar 

  16. N. Volcker, D. Klee, H. Hocker, S. Langefeld, Mater. Med. 12, 111–119 (2001)

    Article  Google Scholar 

  17. S. Hu, X. Ren, M. Bachmann, C.E. Sims, G.P. Li, N.L. Allbritton, Anal. Chem. 74, 4117–4123 (2003)

    Article  Google Scholar 

  18. J. Roth, V. Albrecht, M. Nitschke, C. Bellmann, F. Simon, S. Zschoche, S. Michel, C. Luhmann, K. Grundke, B. Voit, Langmuir 24, 12603–12611 (2008)

    Article  Google Scholar 

  19. D. Sun, B.B. Li, Z.L. Xu, Korean J. Chem. Eng. 30, 2059–2067 (2013)

    Article  Google Scholar 

  20. G. Slaughter, B. Stevens, BioChip. J. 8, 28–34 (2014)

    Article  Google Scholar 

  21. R.J. Higgins, W.E. Rhine, M.J. Cima, H.K. Bowen, E.R. William, J. Am. Ceram. Soc. 77, 2243–2253 (1994)

    Article  Google Scholar 

  22. B. Dhananjay, K.M. Chantal, J. Microelectron, Microelectron. Eng. 83, 1277–1279 (2006)

    Article  Google Scholar 

  23. K. Seo, M. Kim, S. Seok, D.H. Kim, Colloid Surf. A. 492, 110–118 (2016)

    Article  Google Scholar 

  24. W.L. Qiu, D. Xu, B. Liu, S. Lie, Q.P. Guo, RSC Adv. 5, 71329–71335 (2015)

    Article  ADS  Google Scholar 

  25. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546–551 (1994)

    Article  Google Scholar 

  26. Y.C. Yong, B. Bhushan, Langmuir 25, 9208 (2009)

    Article  Google Scholar 

  27. K.X. Meng, W.L. Fan, H. Wang, Appl. Therm. Eng. 148, 316 (2019)

    Article  Google Scholar 

  28. B. Ding, H. Wang, X. Zhu, R. Chen, Q. Liao, Int. J. Heat Mass Tran. 124, 1025 (2008)

    Article  Google Scholar 

  29. Y.C. Jung, B. Bhushan, Langmuir 24, 6262 (2008)

    Article  Google Scholar 

  30. X.W. Li, L. Zhang, T. Shi, C.W. Zhang, L.C. Zhang, Mater. Corros. 70, 558–565 (2019)

    Article  Google Scholar 

  31. T.B. Nguyen, S. Park, H. Lim, Appl. Surf. Sci. 435, 585–591 (2018)

    Article  ADS  Google Scholar 

  32. S.B. Subramanyam, V. Kondrashov, J. Rühe, K.K. Varanasi, A.C.S. Appl, Mater. Inter. 8, 12583–12587 (2016)

    Article  Google Scholar 

  33. A. Davis, Y.H. Yong, A. Steele, I.S. Bayer, E. Loth, Appl. Mater. Inter. 6, 9272–9279 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (U1833202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Shi or Huaqiao Peng.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, H., Xue, S. et al. A simple strategy towards construction of fluorine-free superhydrophobic aluminum alloy surfaces: self-cleaning, anti-corrosion and anti-frost. Appl. Phys. A 128, 626 (2022). https://doi.org/10.1007/s00339-022-05758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05758-9

Keywords

Navigation