Skip to main content
Log in

Bipolar interface-type resistive switching effect in the MoS2–xOx film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Resistance random access memories (RRAM) show excellent potential applications for nonvolatile data storage. Recently, one of the most representative materials is the MoS2–xOx fabricated by oxidation of the MoS2 flake. The resistive switching (RS) effect was observed in the graphene/MoS2–xOx/graphene device. This bulk-type RS device has a low Roff/Ron ratio. In addition, interface-type RS effect can be more attractive, which is not explored in MoS2–xOx devices yet. In this work, a bipolar interface-type RS effect is observed in Au/MoS2–xOx (MSO)/Au device for the first time. By inserting the Ti layer between top Au and MSO layers, a high stable bipolar interface-type RS effect is observed, and the Roff/Ron ratio is significantly increased by two orders of magnitude. The performance improvement can be understood by the redox reaction of the interface Ti/MSO. This work could provide a reference for improving the performance of RS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Chua, IEEE Trans. Circ. Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453(7191), 80–83 (2008)

    Article  ADS  Google Scholar 

  3. M.A. Zidan, J.P. Strachan, W.D. Lu, Nat. Electron. 1(1), 22–29 (2018)

    Article  Google Scholar 

  4. H.S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Proc. IEEE. 100(6), 1951–1970 (2012)

    Article  Google Scholar 

  5. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8(1), 13–24 (2013)

    Article  ADS  Google Scholar 

  6. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Nature 521(7550), 61–64 (2015)

    Article  ADS  Google Scholar 

  7. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10(4), 1297–1301 (2010)

    Article  ADS  Google Scholar 

  8. Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang, Q. Xia, J.J. Yang, Nat. Rev. Mater. 5(3), 173–195 (2020)

    Article  ADS  Google Scholar 

  9. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Nat. Mater. 16(1), 101–108 (2017)

    Article  ADS  Google Scholar 

  10. J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Nature 464(7290), 873–876 (2010)

    Article  ADS  Google Scholar 

  11. C.L. Lo, T.H. Hou, M.C. Chen, J.J. Huang, IEEE Trans. Electron. Dev. 60(1), 420–426 (2013)

    Article  ADS  Google Scholar 

  12. H. Akinaga, H. Shima, Proc. IEEE. 98(12), 2237–2251 (2010)

    Article  Google Scholar 

  13. S. X. Wu, X. Y. Li, X. J. Xing, P. Hu, Y.P. Yu, S.W. Li, Appl. Phys. Lett. 94(25) (2009)

  14. J.Y. Son, Y.H. Shin, Appl. Phys. Lett. 92(22) (2008)

  15. C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, C. Hu, T.-Y. Tseng, J. Electrochem. Soc. 154(9) (2007)

  16. S. Li, H.Z. Zeng, S.Y. Zhang, X.H. Wei, Appl. Phys. Lett. 102(15) (2013)

  17. V. Thakare, G. Xing, H. Peng, A. Rana, O. Game, P. Anil Kumar, A. Banpurkar, Y. Kolekar, K. Ghosh, T. Wu, D.D. Sarma, S.B. Ogale, Appl. Phys. Lett. 100(17) (2012)

  18. Z. Wang, D. Nminibapiel, P. Shrestha, J. Liu, W. Guo, P.G. Weidler, H. Baumgart, C. Wöll, E. Redel, ChemNanoMater. 2(1), 67–73 (2016)

    Article  Google Scholar 

  19. C. Pan, Y. Ji, N. Xiao, F. Hui, K. Tang, Y. Guo, X. Xie, F.M. Puglisi, L. Larcher, E. Miranda, L. Jiang, Y. Shi, I. Valov, P.C. McIntyre, R. Waser, M. Lanza, Adv. Funct. Mater. 27(10), 1604811–1604821 (2017)

    Article  Google Scholar 

  20. R. Xu, H. Jang, M.H. Lee, D. Amanov, Y. Cho, H. Kim, S. Park, H.J. Shin, D. Ham, Nano Lett. 19(4), 2411–2417 (2019)

    Article  ADS  Google Scholar 

  21. S.M. Hus, R. Ge, P.A. Chen, L. Liang, G.E. Donnelly, W. Ko, F. Huang, M.H. Chiang, A.P. Li, D. Akinwande, Nat. Nanotechnol. 16(1), 58–62 (2021)

    Article  ADS  Google Scholar 

  22. S. Bhattacharjee, E. Caruso, N. McEvoy, O.C. C, K. O'Neill, L. Ansari, G.S. Duesberg, R. Nagle, K. Cherkaoui, F. Gity, P.K. Hurley, ACS Appl. Mater. Inter. 12(5), 6022–6029 (2020)

  23. V.K. Sangwan, D. Jariwala, I.S. Kim, K.S. Chen, T.J. Marks, L.J. Lauhon, M.C. Hersam, Nat. Nanotechnol. 10(5), 403–406 (2015)

    Article  ADS  Google Scholar 

  24. M. Wang, S. Cai, C. Pan, C. Wang, X. Lian, Y. Zhuo, K. Xu, T. Cao, X. Pan, B. Wang, S.-J. Liang, J.J. Yang, P. Wang, F. Miao, Nat. Electron. 1(2), 130–136 (2018)

    Article  Google Scholar 

  25. J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L. David Kilcoyne, G. Medeiros-Ribeiro, R. Stanley Williams, Adv. Mater. 22(32), 3573–3577 (2010).

  26. A. Sawa, Mater. Today. 11(6), 28–36 (2008)

    Article  Google Scholar 

  27. Y. Liu, H. Wu, H.C. Cheng, S. Yang, E.B. Zhu, Q.Y. He, M.N. Ding, D.H. Li, J. Guo, N.O. Weiss, Y. Huang, X.F. Duan, Nano Lett. 15(5), 3030–3034 (2015)

    Article  ADS  Google Scholar 

  28. J.L. Wang, Q. Yao, C.W. Huang, X.M. Zhou, L. Liao, S.S. Chen, Z.Y. Fan, K. Zhang, W. Wu, X.H. Xiao, C.Z. Jiang, W.W. Wu, Adv. Mater. 28(37), 8302–8308 (2016)

    Article  Google Scholar 

  29. X.B. Cai, Z.F. Wu, X. Han, Y. Chen, S.G. Xu, J.X.Z. Lin, T.Y. Han, P.G. He, X.M. Feng, L.H. An, R. Shi, J.W. Wang, Z.H. Ying, Y. Cai, M.Y. Hua, J.W. Liu, D. Pan, C. Cheng, N. Wang, Nat. Commun. 13(1), 1–9 (2022)

    Google Scholar 

  30. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Rep. Prog. Phys. 75(7), 076502–076533 (2012)

    Article  ADS  Google Scholar 

  31. D.-J. Seong, M. Jo, D. Lee, H. Hwang, Electrochem. Solid-State Lett. 10(6) (2007)

  32. M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.B. Kim, C.J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.K. Yoo, K. Kim, Nat. Mater. 10(8), 625–630 (2011)

    Article  ADS  Google Scholar 

  33. K. Baek, S. Park, J. Park, Y.M. Kim, H. Hwang, S.H. Oh, Nanoscale 00, 1–3 (2016)

    Google Scholar 

  34. X. Ding, Y. Feng, P. Huang, L. Liu, J. Kang, Nanoscale Res. Lett. 14(1), 157–164 (2019)

    Article  ADS  Google Scholar 

  35. A.R. Lee, Y.C. Bae, H.S. Im, J.P. Hong, Appl. Surf. Sci. 274, 85–88 (2013)

    Article  ADS  Google Scholar 

  36. C. He et al., ACS Nano 6, 4214–4221 (2012)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52001169, 61874060, U1932159, 61911530220, 12104238), Natural Science Foundation of Jiangsu Province (Grant No. 20KJB430010), NUPTSF (Grant Nos. NY219164, NY217118), the open Project of the laboratory of Solid-state Microstructures of Nanjing University (Grant No. M33038), Foundation of Jiangsu Provincial Double-Innovation Doctor Program (Grant No. CZ007SC20018), Jiangsu Specially Appointed Professor program, Natural Science Foundation of Jiangsu Province (Grant Nos. BK20181388, 19KJA180007), Oversea Researcher Innovation Program of Nanjing, Innovation Project of Jiangsu Province (Grant Nos. KYCX20_0791, KYCX21_0697).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lujun Wei, Yanfeng Lv or Yong Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1082 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Yin, X., Chen, L. et al. Bipolar interface-type resistive switching effect in the MoS2–xOx film. Appl. Phys. A 128, 623 (2022). https://doi.org/10.1007/s00339-022-05756-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05756-x

Keywords

Navigation