Skip to main content
Log in

CQDs/PANI nanocomposites based sensing probe for the sensitive and selective detection of mercury ions via Raman spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A label-free chemo-probe comprising carbon quantum dots/polyaniline (CQDs/PANI) nanocomposites was developed for the sensitive and selective detection of mercury ions (Hg2+). CQDs/PANI nanocomposites were synthesized through one-step complexation reaction method. Present work represents a thorough study of structural and functional properties of CQDs/PANI nanocomposites. CQDs/PANI nanocomposites consist of fibrous network type of structure with mean particle size of 53.09 nm. Polymer nanocomposites exhibit amorphous nature with average crystallite size of 5.19 nm. CQDs/PANI nanocomposites exhibit high thermal stability up to 750 °C. Raman spectroscopy was used in sensitive and selective detection of Hg2+ ions in dynamic range of 0.01–0.1 ppm. Limit of detection (LOD) and limit of quantification (LOQ) for Hg2+ ions were obtained to be 0.017–0.031 ppm, respectively. CQDs/PANI nanocomposite-based sensing probe was found to be highly effective in pH range 3–7 for detection of Hg2+ ions. The proposed sensing probe was positively tested in real soil samples for detection of Hg2+ ions. It has shown good reproducibility and all the recorded observations indicate that CQDs/PANI nanocomposites can act as potential candidate for sensing of Hg2+ ions in environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.I. Winey, R.A. Vaia, Polym. Nanocomposites MRS. Bull. 32, 314 (2007)

    Google Scholar 

  2. S.C. Tjong, Synthesis and properties of nano-hydroxyapatite/polymer nanocomposites for bone tissue engineering, in Advances in Biomedical Sciences and Engineering. (Bentham Science Publishers Ltd, Sharjah, 2009), pp. 82–142

    Google Scholar 

  3. N. Pramanik, S. Mohapatra, S. Alam, P. Pramanik, Synthesis of hydroxyapatite/poly (vinyl alcohol phosphate) nanocomposite and its characterization. Polym. Compos. 29(4), 429 (2008)

    Google Scholar 

  4. K. Mallick, M.J. Witcomb, R. Erasmus, M.S. Scurrell, Hydrophilic behaviour of gold-poly (o-phenylenediamine) hybrid nanocomposite. Mater. Sci. Eng.: B. 140(3), 166 (2007)

    Google Scholar 

  5. S. Samanta, A.K. Nandi, Recyclable high performance palladium heterogeneous catalyst with porous PVDF binder from the novel gel nanocomposite route. J. Phys. Chem. C 113(11), 4721 (2009)

    Google Scholar 

  6. J. Macanas, J. Parrondo, M. Munoz, S. Alegret, F. Mijangos, D.N. Muraviev, Preparation and characterisation of metal–polymer nanocomposite membranes for electrochemical applications. Phys. Stat. sol. (a) 204(6), 1699 (2007)

    ADS  Google Scholar 

  7. F.Z. Yang, Y.C. Chen, Y.F. Lin, K.H. Yu, Y.H. Liu, Y. Wang, J.T. Chen, Nickel catalysts bearing bidentate α-aminoaldimines for ethylene polymerization—independent and cooperative structure/reactivity relationship resulting from unsymmetric square planar coordination. Dalton Trans. 7, 1243 (2009)

    Google Scholar 

  8. R.A. Hule, D.J. Pochan, Polymer nanocomposites for biomedical applications. MRS Bull. 32(4), 354 (2007)

    Google Scholar 

  9. J. Njuguna, K. Pielichowski, Polymer nanocomposites for aerospace applications: properties. Adv. Eng. Mater. 5(11), 769 (2003)

    Google Scholar 

  10. A.M. Youssef, Polymer nanocomposites as a new trend for packaging applications. Polym. Plast. Technol. Eng. 52(7), 635 (2013)

    Google Scholar 

  11. C. Fangmin, Z. Ningchun, X. Haiming, L. Yi, Z. Wenfang, Z. Zhiwei, C. Mingxue, Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci. Total Environ. 359(1–3), 156 (2006)

    ADS  Google Scholar 

  12. J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, Nanostructured polyaniline sensors. Chem. Eur. J. 10(6), 1314 (2004)

    Google Scholar 

  13. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362 (2015)

    Google Scholar 

  14. W.H. Schroeder, J. Munthe, Atmospheric mercury—an overview. Atmos. Environ. 32(5), 809 (1998)

    ADS  Google Scholar 

  15. Q. Wang, D. Kim, D.D. Dionysiou, G.A. Sorial, D. Timberlake, Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ. Pollut. 131(2), 323 (2004)

    Google Scholar 

  16. M. Kumar, A. Puri, A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 16(1), 40 (2012)

    Google Scholar 

  17. A. Kudo, S. Miyahara, A case history; Minamata mercury pollution in Japan–from loss of human lives to decontamination. Water Sci. Technol. 23(1), 283 (1991)

    Google Scholar 

  18. G.V. Ramesh, T.P. Radhakrishnan, A universal sensor for mercury (Hg, HgI, HgII) based on silver nanoparticle-embedded polymer thin film. ACS Appl. Mater. Interfaces 3(4), 988 (2011)

    Google Scholar 

  19. X. Wang, J. Zhang, W. Zou, R. Wang, Facile synthesis of polyaniline/carbon dot nanocomposites and their application as a fluorescent probe to detect mercury. RSC Adv. 5(52), 41914 (2015)

    ADS  Google Scholar 

  20. Q. Wang, H. Wang, D. Liu, P. Du, P. Liu, Synthesis of flake-shaped nitrogen-doped carbon quantum dot/polyaniline (N-CQD/PANI) nanocomposites via rapid-mixing polymerization and their application as electrode materials in supercapacitors. Synth. Metals 231, 120 (2017)

    Google Scholar 

  21. A. Saikia, N. Karak, Polyaniline nanofiber/carbon dot nanohybrid as an efficient fluorimetric sensor for As(III) in water and effective antioxidant. Mater. Today Commun. 14, 82 (2018)

    Google Scholar 

  22. P. Viswanathan, Y. Muralidaran, G. Ragavan, Challenges in oral drug delivery: a nano-based strategy to overcome (Elsevier, Nanostructures for Oral Medicine, 2017), p. 173

    Google Scholar 

  23. B. Bhowmick, D. Mondal, D. Maity, M.M. Rahaman Mollick, M. Kanti Bain, N. Kumar Bera, D. Chattopadhyay, In situ fabrication of polyaniline-silver nanocomposites using soft template of sodium alginate. J. Appl. Polym. Sci. 129(6), 3551 (2013)

    Google Scholar 

  24. R. Abdelkader, H. Amine, B. Mohammed, Thermally stable forms of pure polyaniline catalyzed by an acid-exchanged montmorillonite clay called maghnite-H+ as an effective catalyst. Int. J. Polym. Sci. 2012, 1–7 (2012)

    Google Scholar 

  25. V. Sridevi, S. Malathi, C.S. Devi, Synthesis and characterization of polyaniline/gold nanocomposites. Chem. Sci. J. 26, 1 (2011)

    Google Scholar 

  26. N.A. Rangel-Vazquez, C. Sánchez-López, F.R. Felix, Spectroscopy analyses of polyurethane/polyaniline IPN using computational simulation (Amber, MM+ and PM3 method). Polímeros 24, 453 (2014)

    Google Scholar 

  27. S. Fathalipour, S. Ahunbar, Polyaniline-ag nanocomposite containing silane ligand: synthesis characterization and electroactivity behavior. Polym. Sci. Ser. B 61(5), 663 (2019)

    Google Scholar 

  28. U. Bogdanovic, I. Pašti, G. Ciric-Marjanovic, M. Mitric, S.P. Ahrenkiel, V. Vodnik, Interfacial synthesis of gold–polyaniline nanocomposite and its electrocatalytic application. ACS Appl. Mater. Interfaces 7(51), 28393 (2015)

    Google Scholar 

  29. J. Liu, H. Bi, P.C. Morais, X. Zhang, F. Zhang, L. Hu, Room-temperature magnetism in carbon dots and enhanced ferromagnetism in carbon dots-polyaniline nanocomposite. Sci. Rep. 7(1), 1 (2017)

    ADS  Google Scholar 

  30. K.L. Bhowmik, K. Deb, A. Bera, R.K. Nath, B. Saha, Charge transport through polyaniline incorporated electrically conducting functional paper. J. Phys. Chem. C 120(11), 5855 (2016)

    Google Scholar 

  31. S.M. Ambalagi, M. Devendrappa, S. Nagaraja, B. Sannakki, Dielectric properties of PANI/CuO nanocomposites. IOP Conf. Ser.: Mater. Sci. Eng. 310(1), 012081 (2018)

    Google Scholar 

  32. A. Olad, M. Khatamian, B. Naseri, Removal of toxic hexavalent chromium by polyaniline modified clinoptilolite nanoparticles. J. Iran. Chem. Soc. 8(1), S141 (2011)

    Google Scholar 

  33. V.H. Nguyen, J.J. Shim, Green synthesis and characterization of carbon nanotubes/polyaniline nanocomposites. J. Spectrosc. 2015, 1–9 (2015)

    Google Scholar 

  34. M.J. Chatterjee, A. Ghosh, A. Mondal, D. Banerjee, Polyaniline–single walled carbon nanotube composite—a photocatalyst to degrade rose bengal and methyl orange dyes under visible-light illumination. RSC Adv. 7(58), 36403 (2017)

    ADS  Google Scholar 

  35. A. Shakoor, T.Z. Rizvi, Raman spectroscopy of conducting poly (methyl methacrylate)/polyaniline dodecylbenzenesulfonate blends. J. Raman Spectrosc.: Int. J. Orig. Work Asp. Raman Spectrosc. Incl. High. Ord. Process. Brillouin Rayleigh Scatt. 41(2), 237 (2010)

    Google Scholar 

  36. L. Dennany, P.C. Innis, S.T. McGovern, G.G. Wallace, R.J. Forster, Electronic interactions within composites of polyanilines formed under acidic and alkaline conditions conductivity, ESR, Raman, UV-vis and fluorescence studies. Phys. Chem. Chem. Phys. 13(8), 3303 (2011)

    Google Scholar 

  37. A. Nautiyal, S. Parida, Comparison of polyaniline electrodeposition on carbon steel from oxalic acid and salicylate medium. Prog. Org. Coat. 94, 28 (2016)

    Google Scholar 

  38. M.-C. Bernard, A.-L. Goff, Raman spectroscopy for the study of polyaniline. Synth. Metal. 85, 1145 (1997)

    Google Scholar 

  39. M.I. Boyer, S. Quillard, E. Rebourt, G. Louarn, J.P. Buisson, A. Monkman, S. Lefrant, Vibrational analysis of polyaniline: a model compound approach. J. Phys. Chem. B 102(38), 7382 (1998)

    Google Scholar 

  40. J. Stejskal, M. Trchová, P. Bober, P. Humpolíček, V. Kašpárková, I. Sapurina, M.A. Shishov, M. Varga, Conducting polymers: polyaniline. Encycl. Polym. Sci. Technol. (2002). https://doi.org/10.1002/0471440264.pst640

    Article  Google Scholar 

  41. G.K. Darbha, A.K. Singh, U.S. Rai, E. Yu, H. Yu, P. Chandra Ray, Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 130(25), 8038 (2008)

    Google Scholar 

  42. H. Yu, J. Li, Y. Luan, Meta-analysis of soil mercury accumulation by vegetables. Sci. Rep. 8(1), 1261 (2018)

    ADS  Google Scholar 

  43. L. Cherian, V.K. Gupta, A simple field test for the detection of mercury in polluted water, air and soil samples. Fresenius’ J. Anal. Chem. 336(5), 400 (1990)

    Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to acknowledge Prof. (dr.) Lalit Kumar Awasthi (Director, National Institute of Technology, Hamirpur, India) for his constant support.

Funding

No funding from any external source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lovepreet Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8558 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Singh, V. CQDs/PANI nanocomposites based sensing probe for the sensitive and selective detection of mercury ions via Raman spectroscopy. Appl. Phys. A 128, 610 (2022). https://doi.org/10.1007/s00339-022-05752-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05752-1

Keywords

Navigation