Skip to main content
Log in

CPW-fed octagonal-shaped metamaterial-inspired multiband antenna on frequency selective surface for gain enhancement

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a novel CPW-fed octagonal-shaped metamaterial-inspired antenna on frequency selective surface (FSS) for multiband operations which is suitable for 5G mobile communications and satellite applications. The proposed monopole antenna has the dimensions of 30 × 30 × 1.6 mm3 on FR4 material for the designed resonant frequency of 4.5 GHz. An octagonal-shaped metamaterial unit cell is introduced on the antenna for the other resonant frequencies at 1.7 GHz and 3.4 GHz and the gain achieved only by the antenna without FSS is 2.5 dBi. To enhance the gain, an FSS is proposed as a reflector to the antenna. It acts as a good reflector and enhances the gain upto 8.2 dBi. The angular stability of the FSS unit cell is analyzed with TE and TM polarization and found as 50°. Antenna parameters such as return loss, gain, radiation pattern and transmission/reflection coefficients are observed by the high-frequency structure simulator (HFSS) simulation software and all the results are compared with the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Boopathi-Rani, S.K. Pandey, Metamaterial-inspired printed UWB antenna for short range RADAR applications. Microw. Opt. Technol. Lett. 59(7), 160–164 (2017). https://doi.org/10.1002/mop.30590

    Article  Google Scholar 

  2. R.S. Daniel, R. Pandeeswari, S. Raghavan, Dual-band monopole antenna loaded with ELC metamaterial resonator for WiMAX and WLAN applications. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-1985-7

    Article  Google Scholar 

  3. A. Choudhury, S. Maity, Design and fabrication of CSRR based tunable mechanically and electrically efficient band pass filter for K-band application. AEU Int. J. Electron. Commun. 72, 134–148 (2017). https://doi.org/10.1016/j.aeue.2016.11.021

    Article  Google Scholar 

  4. A. Kapoor, R. Mishra, P. Kumar, Frequency selective surfaces as spatial filters: fundamentals, analysis and applications. Alexandria Eng. J. 61(6), 4263–4293 (2022). https://doi.org/10.1016/j.aej.2021.09.046

    Article  Google Scholar 

  5. P. Das, K. Mandal, Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna. IET Microw. Antennas Propag. 13(3), 269–277 (2019). https://doi.org/10.1049/iet-map.2018.5426

    Article  Google Scholar 

  6. F. Güneş, M.A. Belen, P. Mahouti, Performance enhancement of a microstrip patch antenna using substrate integrated waveguide frequency selective surface for ISM band applications. Microw. Opt. Technol. Lett. 60(5), 1160–1164 (2018). https://doi.org/10.1002/mop.31124

    Article  Google Scholar 

  7. F.F. Elidiane-Mirella et al., 2.4–5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement. AEUE Int. J. Electron. Commun. 108, 235–241 (2019). https://doi.org/10.1016/j.aeue.2010.04.011

    Article  Google Scholar 

  8. S. Kundu, Gain augmentation of a CPW fed printed miniature UWB antenna using frequency selective surface. Microw. Opt. Technol. Lett. 60(7), 1820–1826 (2018). https://doi.org/10.1002/mop.31246

    Article  Google Scholar 

  9. Z.A. Nassr, S.N. Zabri, N.A. Shairi, Z. Zakaria, A. Othman, A.M. Zobilah, Performance improvement of a slotted square patch antenna using FSS superstrate for wireless application. J. Phys. Conf. Ser. (2020). https://doi.org/10.1088/1742-6596/1502/1/012030

    Article  Google Scholar 

  10. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(3), 1–11 (2005). https://doi.org/10.1103/PhysRevE.71.036617

    Article  Google Scholar 

  11. H. Zhu, X. Li, Z. Qi, J. Xiao, A 320 GHz octagonal shorted annular ring on-chip antenna array. IEEE Access 8, 84282–84289 (2020). https://doi.org/10.1109/ACCESS.2020.2991868

    Article  Google Scholar 

  12. C. A. Balanis, Antenna theory. (2010)

  13. F. Bilotti, A. Toscano, L. Vegni, Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans. Antennas Propag. 55(8), 2258–2267 (2007). https://doi.org/10.1109/TAP.2007.901950

    Article  ADS  Google Scholar 

  14. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of E and I. Sov. Phys. Uspekhi 10(4), 509–513 (1968)

    Article  ADS  Google Scholar 

  15. X. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco, J.A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 70(1), 7 (2004). https://doi.org/10.1103/PhysRevE.70.016608

    Article  Google Scholar 

  16. B.A. Munk, Frequency selective surfaces theory and design (Wiley, 2000)

    Book  Google Scholar 

  17. S.A. Suhaimi, S.N. Azemi, P.J. Soh, Feasibility study of frequency selective surfaces for structural health monitoring system. Prog. Electromagn. Res. C 80(January), 199–209 (2018). https://doi.org/10.2528/pierc17081802

    Article  Google Scholar 

  18. J. Yang, J. Chen, L. Quan, Z. Zhao, H. Shi, Y. Liu, Metamaterial-inspired optically transparent active dual-band frequency selective surface with independent wideband tunability. Opt. Express 29(17), 27542 (2021). https://doi.org/10.1364/oe.434262

    Article  ADS  Google Scholar 

  19. D. Sood, C.C. Tripathi, Polarization insensitive compact wide stop-band frequency selective surface. J. Microw. Optoelectron. Electromagn. Appl. 17(1), 53–64 (2018). https://doi.org/10.1590/2179-10742018v17i11128

    Article  Google Scholar 

  20. M. Fallah, A.H. Nazeri, M.R. Azadkhah, A novel fractal multi-band frequency selective surface. J. Microw. Optoelectron. Electromagn. Appl. 18(2), 276–285 (2019). https://doi.org/10.1590/2179-10742019v18i21559

    Article  Google Scholar 

  21. Y. Qiang, D. Zhou, Q. Liu, Z. Yao, Design of low-profile frequency-selective rasorbers based on three-legged loaded element. Int. J. Antennas Propag. (2020). https://doi.org/10.1155/2020/9878607

    Article  Google Scholar 

  22. Q. Chen, M. Guo, D. Sang, Y. Fu, Polarization-insensitive frequency-selective rasorber based on square-loop element. Prog. Electromagn. Res. M 79(February), 41–49 (2019). https://doi.org/10.2528/PIERM18110607

    Article  Google Scholar 

  23. J.D. Kraus, R.J. Marhefka, A.S. Khan, Antennas and wave propagation. Antennas Wave Propag. (2018). https://doi.org/10.5772/intechopen.71178

    Article  Google Scholar 

  24. S. Kundu, A compact uniplanar ultra-wideband frequency selective surface for antenna gain improvement and ground penetrating radar application. Int. J. RF Microw. Comput. Eng. 30(10), 1–13 (2020). https://doi.org/10.1002/mmce.22363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajasri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasri, S., Rani, R.B. CPW-fed octagonal-shaped metamaterial-inspired multiband antenna on frequency selective surface for gain enhancement. Appl. Phys. A 128, 594 (2022). https://doi.org/10.1007/s00339-022-05742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05742-3

Keywords

Navigation