Skip to main content
Log in

Modeling of temperature effects on band structure in type-II superlattices using an empirical tight-binding method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The band edge energy and effective mass of type II superlattices on a (0 0 1) GaSb substrate at different temperatures have been investigated using the empirical sp3s tight-binding method. The band gap of InAs/GaSb superlattices and InAs/GaSb/AlSb/GaSb M-structure as a function of temperature is fitted using empirical Varshni’s equation. The effective mass as a function of temperature was also calculated by employing the numerical second derivative of the band energy dispersion curve. Based on the above calculation model, the analytical and numerical model of P–π–M–N device structure of superlattices model as an example was established to describe the dependence of band structure on the working temperature, which will provide guidance to achieve the higher performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, R. McClintock, Antimonide-based Type II superlattices: a superior candidate for the third generation of infrared imaging systems. J. Electron. Mater. 43, 2802–2807 (2014). https://doi.org/10.1007/s11664-014-3080-y

    Article  ADS  Google Scholar 

  2. M. Razeghi, A. Dehzangi, J. Li, Review of multi-band short-wavelength, mid-wavelength long-wavelength type-II superlattice based infrared photodetector. (2020). https://doi.org/10.13140/RG.2.2.31911.78240

  3. D.Z. Ting, A. Soibel, S.A. Keo, S.B. Rafol, J.M. Mumolo, J.K. Liu, C.J. Hill, A. Khoshakhlagh, L. Hoglund, E.M. Luong, S.D. Gunapala, Development of quantum well, quantum dot, and type II superlattice infrared photodetectors. J. Appl. Remote Sens. 8, 084998 (2014). https://doi.org/10.1117/1.JRS.8.084998

    Article  ADS  Google Scholar 

  4. Y.N. Du, Y. Xu, G.-F. Song, Theoretical analysis on the energy band properties of N- and M-structure type-II superlattices. Superlattices and Microstructures. 145, 106590 (2020). https://doi.org/10.1016/j.spmi.2020.106590

    Article  Google Scholar 

  5. E.H. Aifer, J.G. Tischler, J.H. Warner, I. Vurgaftman, W.W. Bewley, J.R. Meyer, J.C. Kim, L.J. Whitman, W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency. Appl. Phys. Lett. 89, 053519 (2006). https://doi.org/10.1063/1.2335509

    Article  ADS  Google Scholar 

  6. L.W. Wang, S.H. Wei, T. Mattila, A. Zunger, I. Vurgaftman, J. Meyer, Multiband coupling and electronic structure of (InAs)n/(GaSb)n superlattices. Phys. Rev. B. 60, 5590 (1999). https://doi.org/10.1103/PhysRevB.60.5590

    Article  ADS  Google Scholar 

  7. P.C. Klipstein, Y. Livneh, O. Klin, S. Grossman, N. Snapi, A. Glozman, E. Weiss, A k·p model of InAs/GaSb type II superlattice infrared detectors. Infrared Phys. Technol. 59, 53–59 (2013). https://doi.org/10.1016/j.infrared.2012.12.009

    Article  ADS  Google Scholar 

  8. B.-M. Nguyen, M. Razeghi, V. Nathan, G.J. Brown, Type-II “M” structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes. Proc. SPIE. 6479, 64790S (2007). https://doi.org/10.1117/12.711588

    Article  ADS  Google Scholar 

  9. T. Kato, S. Souma, sp3s tight-binding calculation of band edges and effective masses of InAs/GaSb superlattices with different interface structures. Superlattices Microstruct. 122, 492–500 (2018). https://doi.org/10.1016/j.spmi.2018.06.060

    Article  ADS  Google Scholar 

  10. X.L. Zhang, L.F. Liu, W.M. Liu, Quantum anomalous hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 3, 2908 (2013). https://doi.org/10.1038/srep02908

    Article  Google Scholar 

  11. S.M. Nejad, N.R. Sheshkelani, The modeling of a SWIR type-II InAs/AlSb superlattice using an ETBM and interface. Superlattices Microstruct. 143, 106523 (2020). https://doi.org/10.1016/j.spmi.2020.106523

    Article  Google Scholar 

  12. R. Magri, A. Zunger, Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices. Phys. Rev. B. 65, 165302 (2002). https://doi.org/10.1103/PhysRevB.65.165302

    Article  ADS  Google Scholar 

  13. P. Piquini, A. Zunger, R. Magri, Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds. Phys. Rev. B. 77, 115314 (2008). https://doi.org/10.1103/PhysRevB.77.115314

    Article  ADS  Google Scholar 

  14. R. Alchaar, J.B. Rodriguez, L. Höglund, S. Naureen, P. Christol, Characterization of an InAs/GaSb type-II superlattice barrier photodetector operatingin the LWIR domain. AIP Adv. 9, 055012 (2019). https://doi.org/10.1063/1.5094703

    Article  ADS  Google Scholar 

  15. E. Gomóka, O. Markowska, M. Kopytko, A. Kowalewski, S. Krishna, Mid-wave InAs/GaSb superlattice barrier infrared detectors with nBnN and pBnN design. Bull. Pol. Acad. Sci. (2018). https://doi.org/10.24425/123438

    Article  Google Scholar 

  16. C. Cervera, I. Ribet-Mohamed, R. Taalat, J.P. Perez, P. Christol, J.B. Rodriguez, Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain. J. Electron. Mater. 41, 2714–2718 (2012). https://doi.org/10.1007/s11664-012-2035-4

    Article  ADS  Google Scholar 

  17. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 11, 5815–5875 (2001). https://doi.org/10.1063/1.1368156

    Article  ADS  Google Scholar 

  18. E.B. Elkenany, Theoretical investigations of electronic, optical and mechanical properties for GaSb and AlSb semiconductors under the influence of temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 150, 15–20 (2015). https://doi.org/10.1016/j.saa.2015.05.033

    Article  Google Scholar 

  19. Y.A. Burenkov, S.Y. Davydov, S.P. Nikanorov, Elastic properties of indium arsenide. Sov. Phys. Solid State. 17, 1446–1447 (1975)

    Google Scholar 

  20. L.J. Slutsky, C.W. Garland, Elastic constants of indium antimonide from 4.2 K to 300 K. Phys. Rev. 113, 167–169 (1959). https://doi.org/10.1103/PhysRev.113.167

    Article  ADS  Google Scholar 

  21. Yu.A. Burenkov, Yu.M. Burdukov, SYu. Davidov, S.P. Nikanorov, Temperature dependences of the elastic constants of gallium arsenide. Sov. Phys. Solid State. 15, 1175–1177 (1973)

    Google Scholar 

  22. Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica. 34, 149–154 (1967). https://doi.org/10.1016/0031-8914(67)90062-6

    Article  ADS  Google Scholar 

  23. A. Sawamura, J. Otsuka, T. Kato, T. Kotani, Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices. J. Appl. Phys. 121, 235704 (2017). https://doi.org/10.1063/1.4986658

    Article  ADS  Google Scholar 

  24. M. Xiong, Research on superlattice epitaxy and surface structure of antimonide-based semiconductors (Harbin Institute of Technology, Harbin, 2010)

    Google Scholar 

  25. A. Sawamura, J. Otsuka, T. Kato, T. Kotani, S. Souma, Nearest-neighbor sp3d5s tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices. Opt. Mater. Express. 8, 1569–1584 (2018). https://doi.org/10.1364/OME.8.001569

    Article  ADS  Google Scholar 

  26. G. Klimeck, R.C. Bowen, T.B. Boykin, T.A. Cwik, sp3s Tightbinding parameters for transport simulations in compound semiconductors. Superlattices Microstruct. 27, 519–524 (2000). https://doi.org/10.1006/spmi.2000.0862

    Article  ADS  Google Scholar 

  27. A. Boutramine, A. Nafidi, D. Barkissy, A. Hannour, A. Elanique, T. El Gouti, Application of the transition semiconductor to semimetal in type II nanostructure superlattice for mid-infrared optoelectronic devices. Appl. Phys. A 122, 1–6 (2016). https://doi.org/10.1007/s00339-016-9911-3

    Article  Google Scholar 

  28. P. Martyniuk, J. Wrobel, E. Plis, P. Madejczyk, W. Gawron, A. Kowalewski, S. Krishna, A. Rogalski, Modeling of midwavelength infrared InAs/GaSb type II superlattice detectors. Opt. Eng. 52, 061307 (2013). https://doi.org/10.1117/1.OE.52.6.061307

    Article  ADS  Google Scholar 

  29. J. Nguyen, D.Z. Ting, C.J. Hill, A. Soibel, S.A. Keo, S.D. Gunapala, Dark current analysis of InAs/GaSb superlattices at low temperatures. Infrared Phys. Technol. 52, 317–321 (2009). https://doi.org/10.1016/j.infrared.2009.05.022

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xubo Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Jie, W., Lyu, Y. et al. Modeling of temperature effects on band structure in type-II superlattices using an empirical tight-binding method. Appl. Phys. A 128, 599 (2022). https://doi.org/10.1007/s00339-022-05740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05740-5

Keywords

Navigation