Skip to main content
Log in

Comparative analysis of hydrogen sensing based on treated-TiO2 in thick film gas sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper compares two TiO2 thick film gas sensors to the hydrogen at elevated operating temperatures. The first gas sensor was prepared by applying nitrogen treatment at 200 °C for 2 h to the TiO2 powder before the TiO2 paste was prepared. The second gas sensor was prepared using TiO2 powder without purification to make the TiO2 paste. Both TiO2 pastes were prepared by mixing the sensing material with an organic binder. Both pastes were deposited on an alumina substrate using a screen-printing technique and annealed at 500 °C for 30 min under ambient air. FESEM and XRD characterizations were carried out to investigate the morphology and elemental composition. The results revealed that the TiO2 thick film with nitrogen treatment produced slightly higher crystallinity and smaller crystallite sizes for the anatase and rutile phases than the TiO2 thick film without nitrogen treatment. In terms of resistivity, the WTN gas sensor produced lower resistivity than the WON gas sensor for operating temperatures below 200 °C. The results were found that the WON gas sensor had higher sensitivity than the WTN gas sensor to various concentrations of hydrogen at the operating temperature of 150 °C, 200 °C, and 250 °C. Both gas sensors also produced similar optimum operating temperatures, which occurred at 200 °C. The sensitivity of the WON gas sensor was approximately 6.30, 8.39, 12.70, 15.92, and 19.87 optimum operating temperatures to 100 ppm, 300 ppm, 500 ppm, 700 ppm, and 1000 ppm of hydrogen, respectively. In addition, the WTN gas sensor has better stability characteristics for higher operating temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Şennik, Z. Çolak, N. Kilinç, Z.Z. Öztürk, Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor. Int. J. Hydrogen Energy 35(9), 4420–4427 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.100

    Article  Google Scholar 

  2. X. Xia, W. Wu, Z. Wang, Y. Bao, Z. Huang, Y. Gao, A hydrogen sensor based on orientation aligned TiO2 thin films with low concentration detecting limit and short response time. Sensors Actuators, B Chem. 234, 192–200 (2016). https://doi.org/10.1016/j.snb.2016.04.110

    Article  Google Scholar 

  3. L. De Luca et al., Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites. Int. J. Hydrogen Energy 37(2), 1842–1851 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.017

    Article  Google Scholar 

  4. S. A. Mohd Chachuli, M. N. Hamidom, M. S. Mamat, M. Ertugurul, N. Abdullah, in Hydrogen gas sensing of TiO2/MWCNT thick film via screen-printing technique (2019) https://doi.org/10.1109/SENSORSNANO44414.2019.8940042

  5. A. Kılıç, O. Alev, O. Özdemir, L.Ç. Arslan, S. Büyükköse, Z.Z. Öztürk, The effect of Ag loading on gas sensor properties of TiO2 nanorods. Thin Solid Films 726, 138662 (2021). https://doi.org/10.1016/j.tsf.2021.138662

    Article  ADS  Google Scholar 

  6. Y. Bao, P. Wei, X. Xia, Z. Huang, K. Homewood, Y. Gao, Remarkably enhanced H2 response and detection range in Nb doped rutile/anatase heterophase junction TiO2 thin film hydrogen sensors. Sensors Actuators B Chem. 301, 127143 (2019). https://doi.org/10.1016/j.snb.2019.127143

    Article  Google Scholar 

  7. Z. Zhu et al., Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.123054

    Article  Google Scholar 

  8. S.A.M. Chachuli et al., Effects of MWCNTs/Graphene Nanoflakes/MXene addition to TiO2 thick film on hydrogen gas sensing. J. Alloys Compd. 882, 160671 (2021). https://doi.org/10.1016/j.jallcom.2021.160671

    Article  Google Scholar 

  9. M. Kumaresan, M. Venkatachalam, M. Saroja, P. Gowthaman, TiO2 nanofibers decorated with monodispersed WO3 heterostruture sensors for high gas sensing performance towards H2 gas. Inorg. Chem. Commun. 129, 108663 (2021). https://doi.org/10.1016/j.inoche.2021.108663

    Article  Google Scholar 

  10. H. Li et al., Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sensors Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2021.130035

    Article  Google Scholar 

  11. M. Radecka et al., TiO2-based nanopowders for gas sensor. Ceram. Mater. 64(4), 545–549 (2010)

    Google Scholar 

  12. M. Shasti, A. Mortezaali, The effect of nitrogen doping of TiO2 compact blocking layers on perovskite solar cell performance. Solid State Sci. 92(April), 68–75 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.03.024

    Article  ADS  Google Scholar 

  13. X. Su, Q. He, Y.E. Yang, G. Cheng, D. Dang, L. Yu, Free-standing nitrogen-doped TiO2 nanorod arrays with enhanced capacitive capability for supercapacitors. Diam. Relat. Mater. 114, 108168 (2021). https://doi.org/10.1016/j.diamond.2020.108168

    Article  ADS  Google Scholar 

  14. B. Zhang, Y. Tian, F. Chi, S. Liu, Synthesis of nitrogen-doped carbon embedded TiO2 films for electrochromic energy storage application. Electrochim. Acta 390, 138821 (2021). https://doi.org/10.1016/j.electacta.2021.138821

    Article  Google Scholar 

  15. Y. Qu, S. Zhu, X. Dong, H. Huang, M. Qi, Nitrogen-doped TiO2 nanotube anode enabling improvement of electronic conductivity for fast and long-term sodium storage. J. Alloys Compd. 889, 161612 (2021). https://doi.org/10.1016/j.jallcom.2021.161612

    Article  Google Scholar 

  16. J. Yu et al., A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage. Chem. Eng. J. 426, 130765 (2021). https://doi.org/10.1016/j.cej.2021.130765

    Article  Google Scholar 

  17. Y. Song, P. Liu, W. Wu, Q. Zhou, High-performance colossal permittivity for textured (Al+Nb) co-doped TiO2 ceramics sintered in nitrogen atmosphere. J. Eur. Ceram. Soc. 41(7), 4146–4152 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.02.029

    Article  Google Scholar 

  18. E. Smecca et al., Nitrogen doped spongy TiO2 layers for sensors application. Mater. Sci. Semicond. Process. 98, 44–48 (2019). https://doi.org/10.1016/j.mssp.2019.03.012

    Article  Google Scholar 

  19. S. A. M. Chachuli, M. N. Hamidon, M. S. Mamat, M. Ertugrul, in Detecting Hydrogen Using TiO2-B2O3 at Different Operating Temperature. 2018 IEEE Int. Conf. Semicond. Electron., pp. 37–40 (2018)

  20. M. Sánchez, M.E. Rincón, Sensor response of sol–gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating techniques. Sensors Actuators B Chem. 140, 17–23 (2009). https://doi.org/10.1016/j.snb.2009.04.006

    Article  Google Scholar 

  21. S. Agarwal et al., An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures. Sensors Actuators B Chem. 346, 130510 (2021). https://doi.org/10.1016/j.snb.2021.130510

    Article  Google Scholar 

  22. A. Debataraja, D.W. Zulhendri, B. Yuliarto, Nugraha, Hiskia, B. Sunendar, Investigation of nanostructured SnO2 synthesized with polyol technique for CO gas sensor applications. Proc. Eng. 170, 60–64 (2017). https://doi.org/10.1016/j.proeng.2017.03.011

    Article  Google Scholar 

  23. S.S. Rane, D.A. Kajale, S.S. Arbuj, S.B. Rane, S.W. Gosavi, Hydrogen, ethanol and ammonia gas sensing properties of nano-structured titanium dioxide thick films. J. Mater. Sci. Mater. Electron. 28, 9011–9016 (2017). https://doi.org/10.1007/s10854-017-6632-0

    Article  Google Scholar 

  24. S.D. Bakrania, M.S. Wooldridge, The effects of two thick film deposition methods on tin dioxide gas sensor performance. Sensors 9(9), 6853–6868 (2009). https://doi.org/10.3390/s90906853

    Article  ADS  Google Scholar 

  25. H. Li et al., Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sensors Actuators B Chem. 341, 130035 (2021). https://doi.org/10.1016/j.snb.2021.130035

    Article  Google Scholar 

  26. N. Bârsan, M. Hübner, U. Weimar, Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds. Sensors Actuators B Chem. 157(2), 510–517 (2011). https://doi.org/10.1016/j.snb.2011.05.011

    Article  Google Scholar 

  27. L. Yadava, R. Verma, R. Dwivedi, Sensing properties of CdS-doped tin oxide thick film gas sensor. Sensors Actuators B Chem. 144(1), 37–42 (2010). https://doi.org/10.1016/j.snb.2009.10.013

    Article  Google Scholar 

  28. S. AmaniahMohdChachuli, M. Nizar Hamidon, M. Ertugrul, M.S. Mamat, H. Jaafar, N.H. Shamsudin, TiO2/B2O3 thick film gas sensor for monitoring carbon monoxide at different operating temperatures. J. Phys. Conf. Ser. 1432(1), 012040 (2020). https://doi.org/10.1088/1742-6596/1432/1/012040

    Article  Google Scholar 

  29. V. Guidi et al., Gas sensing through thick film technology. Sensors Actuators B Chem. 84(1), 72–77 (2002). https://doi.org/10.1016/S0925-4005(01)01077-2

    Article  Google Scholar 

  30. A.A. Tomchenko, G.P. Harmer, B.T. Marquis, J.W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sensors Actuators B Chem. 93(1–3), 126–134 (2003). https://doi.org/10.1016/S0925-4005(03)00240-5

    Article  Google Scholar 

  31. M. Ehsani, M.N. Hamidon, A. Toudeshki, M.H.S. Abadi, S. Rezaeian, CO2 gas sensing properties of screen-printed La2O3/SnO2 thick film. IEEE Sens. J. 16(18), 6839–6845 (2016)

    Article  ADS  Google Scholar 

  32. H.W. Lin, C.P. Chang, W.H. Hwu, M. Der Ger, The rheological behaviors of screen-printing pastes. J. Mater. Process. Technol. 197(1–3), 284–291 (2008). https://doi.org/10.1016/j.jmatprotec.2007.06.067

    Article  Google Scholar 

  33. S.A. MohdChachuli, M.N. Hamidon, M. Ertugrul, M.S. Mamat, H. Jaafar, N. Aris, Influence of B2O3 addition on the properties of TiO2 thick film at various annealing temperatures for hydrogen sensing. J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08059-0

    Article  Google Scholar 

  34. S.A. MohdChachuli, M.N. Hamidon, M.S. Mamat, M. Ertugrulc, N.H. Abdullah, Response of TiO2/MWCNT/B2O3 gas sensor to hydrogen using different organic binder. Mater. Sci. Semicond. Process. 99, 140–148 (2019). https://doi.org/10.1016/j.mssp.2019.04.009

    Article  Google Scholar 

  35. Y. Bessekhouad, D. Robert, J.V. Weber, Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J. Photochem. Photobiol. A Chem. 157(1), 47–53 (2003). https://doi.org/10.1016/S1010-6030(03)00077-7

    Article  Google Scholar 

  36. K. Zakrzewska, M. Radecka, TiO2-based nanomaterials for gas sensing—influence of anatase and rutile contributions. Nanoscale Res. Lett. 12(89), 1–8 (2017). https://doi.org/10.1186/s11671-017-1875-5

    Article  Google Scholar 

  37. W.E. Garner, L.W. Reeves, The thermal decomposition of silver oxide. Trans. Faraday Soc. 59, 254–260 (1954)

    Article  Google Scholar 

  38. A. Monamary, K. Vijayalakshmi, Substantial effect of palladium overlayer deposition on the H2 sensing performance of TiO2/ITO nanocomposite. Ceram. Int. 44(18), 22957–22962 (2018). https://doi.org/10.1016/j.ceramint.2018.09.093

    Article  Google Scholar 

  39. H. Zhang et al., Extending the detection range and response of TiO2 based hydrogen sensors by surface defect engineering. Int. J. Hydrogen Energy 45(35), 18057–18065 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.190

    Article  Google Scholar 

  40. A. Monamary, K. Vijayalakshmi, S.D. Jereil, Fe overlayered hybrid TiO2/ITO nanocomposite sensor for enhanced hydrogen sensing at room temperature by novel two step process. Sensors Actuators B Chem. 287, 278–289 (2019). https://doi.org/10.1016/j.snb.2019.02.049

    Article  Google Scholar 

  41. D. Wang et al., Pd nanocrystal sensitization two-dimension porous TiO2 for instantaneous and high efficient H2 detection. J. Colloid Interface Sci. 597, 29–38 (2021). https://doi.org/10.1016/j.jcis.2021.03.107

    Article  ADS  Google Scholar 

  42. S. Mao et al., High performance hydrogen sensor based on Pd/TiO2 composite film. Int. J. Hydrogen Energy 43(50), 22727–22732 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.094

    Article  Google Scholar 

  43. K.C. Lee, Y.J. Chiang, Y.C. Lin, F.M. Pan, Effects of PdO decoration on the sensing behavior of SnO2 toward carbon monoxide. Sensors Actuators B Chem. 226, 457–464 (2016). https://doi.org/10.1016/j.snb.2015.12.011

    Article  Google Scholar 

  44. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis and investigation: ME, OC, NHS; Writing—original draft preparation: SAMC; Supervision: MNH, MSM.

Corresponding author

Correspondence to Siti Amaniah Mohd Chachuli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Chachuli, S.A., Hamidon, M.N., Ertugrul, M. et al. Comparative analysis of hydrogen sensing based on treated-TiO2 in thick film gas sensor. Appl. Phys. A 128, 596 (2022). https://doi.org/10.1007/s00339-022-05738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05738-z

Keywords

Navigation