Skip to main content
Log in

Composite NVP-IA/AlN powders with core–shell structure for anti-hydrolysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aluminum nitride (AlN) composites powders with hydrolysis resistance were successfully fabricated by chemically grafting titanate coupling agents (KR-238S) and poly (N-vinyl pyrrolidone-co-itaconic acid) (NVP-IA). The results from TEM/EDS, FT-IR, XPS, pH measurements, XRD, SEM/EDS, Zeta potential and TG indicated that the surface of AlN particle were victoriously coated using a dip-coating method. The TEM results showed that a wrapping layer approximately 10–20 nm thick was formed on the surface of the AlN powders, shaping up as a core–shell structure to isolate contact with water molecules. Measuring the pH value of AlN powders in deionized water at 25 °C is to investigate the hydrolytic behavior. The Al(OH)3 was formed within 12 h of the original AlN powders being hydrolyzed, whereas the modified AlN particles maintained their morphology and crystal structure for 276 h to against hydrolysis. In particular, the zeta potential analysis demonstrates that M-AlN has stronger absolute zeta values due to the hydrophilicity of vinylpyrrolidone. The results obtained from the thermal gravimetric analysis also revealed that NVP-IA vaporizes at high temperatures. Therefore, this study provides a novel NVP-IA/AlN composites produced via using a simple cladding modification method, and find a new way to improve the hydrolysis resistance of AlN powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Collange, P. Grosseau, B. Guilhot, Thermal conductivity of compacted AlN samples. J. Eur. Ceram. Soc. 17, 1897–1900 (1997)

    Article  Google Scholar 

  2. X. Fang, L. Jiang, L. Pan, High-thermally conductive AlN-based microwave attenuating composite ceramics with spherical graphite as attenuating agent. J. Adv. Ceram. 10, 301–319 (2021)

    Article  Google Scholar 

  3. G.A. Slack, R.A. Tanzilli, R.O. Pohl, The intrinsic thermal conductivity of AlN. J. Phys. Chem. Solids. 48, 641–647 (1987)

    Article  ADS  Google Scholar 

  4. T. Kusunose, T. Sekino, Improvement in fracture strength in electrically conductive AlN ceramics with high thermal conductivity. Ceram. Int. 42, 13183–13189 (2016)

    Article  Google Scholar 

  5. M. Ohashi, S. Kawakami, Y. Yokogawa, Spherical aluminum nitride fillers for heat-conducting plastic packages. J. Am. Ceram. Soc. 88, 2615–2618 (2005)

    Article  Google Scholar 

  6. R. Yin, Y. Zhang, W. Zhao, Graphene platelets/aluminium nitride metacomposites with double percolation property of thermal and electrical conductivity. J. Eur. Ceram. Soc. 38, 4701–4706 (2018)

    Article  Google Scholar 

  7. X. Fang, L. Pan, S. Yin, Spherical glassy carbon/AlN microwave attenuating composite ceramics with high thermal conductivity and strong attenuation. Ceram. Int. 46, 21505–21516 (2020)

    Article  Google Scholar 

  8. J. Cheng, D. Agrawal, Y. Zhang, Development of translucent aluminum nitride (AIN) using microwave sintering process. J. Electrochem. 9, 67–71 (2002)

    Google Scholar 

  9. P.J. Rutkowski, D. Kata, Thermal properties of AlN polycrystals obtained by pulse plasma sintering method. J. Adv Ceram. 2, 180–184 (2013)

    Article  Google Scholar 

  10. C. Yun, Y. Feng, T. Qiu, Mechanical, electrical, and thermal properties of graphene nanosheet/aluminum nitride composites. Ceram. Int. 41, 8643–8649 (2015)

    Article  Google Scholar 

  11. Q. Shang, Z. Wang, J. Li, Gel-tape-casting of aluminum nitride ceramics. J. Adv. Ceram. 6(1), 67–72 (2017)

    Article  Google Scholar 

  12. A. Kocjan, A. Dakskobler, K. Krnel, The course of the hydrolysis and the reaction kinetics of AlN powder in diluted aqueous suspensions. J. Eur. Ceram. Soc. 31, 815–823 (2011)

    Article  Google Scholar 

  13. A. Kocjan, K. Krnel, T. Kosmač, The influence of temperature and time on the AlN powder hydrolysis reaction products. J. Eur. Ceram. Soc. 28, 1003–1008 (2008)

    Article  Google Scholar 

  14. S. Fukumoto, T. Hookabe, H. Tsubakino, Hydrolysis behavior of aluminum nitride in various solutions. J. Mater. Sci. 35, 2743–2748 (2000)

    Article  ADS  Google Scholar 

  15. I. Ganesh, S.M. Olhero, A.B. Araújo, Chemisorption of phosphoric acid and surface characterization of as passivated AlN powder against hydrolysis. Langmuir 24, 5359–5365 (2008)

    Article  Google Scholar 

  16. Y. Shimizu, J. Hatano, T. Hyodo, Ion-exchange loading of Yttrium acetate as a sintering aid on aluminum nitride powder via aqueous processing. J. Am. Ceram. Soc. 83, 2793–2797 (2000)

    Article  Google Scholar 

  17. G. Zhou, B. Sun, X. Hu, Negative photoconductance effect: an extension function of the TiOx-based memristor. Adv. Sci. 8, 2003765 (2001)

    Article  Google Scholar 

  18. J. Li, Y. Yang, Z. Chen, Self-healing: A new skill unlocked for ultrasound transducer. Nano Energy 68, 104348 (2020)

    Article  Google Scholar 

  19. H.T. Chiu, T. Sukachonmakul, M.T. Kuo, Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite. Appl. Surf. Sci. 292, 928–936 (2014)

    Article  ADS  Google Scholar 

  20. L.-H. Hu, Y.-K. Wang, S.-C. Wang, Aluminum nitride surface functionalized by polymer derived silicon oxycarbonitride ceramic for anti-hydrolysis. J. Alloys Compd. 772, 828–833 (2019)

    Article  Google Scholar 

  21. G. Yu, J. Xie, S. Wang, Non hydrolizable aluminum nitride powders surface modified by silicic acids. Ceram. Int. 47, 29253–29260 (2021)

    Article  Google Scholar 

  22. I. Ganesh, S.M. Olhero, J.M.F. Ferreira, Phosphoric acid treated AlN powder for aqueous processing of net-shape dense AlN and β-SiAlON parts. Adv. Appl. Ceram. 108, 111–117 (2013)

    Article  Google Scholar 

  23. I. Ganesh, N. Thiyagarajan, G. Sundararajan, A non-aqueous processing route for phosphate-protectionof AlN powder against hydrolysis. J. Eur. Ceram. Soc. 28, 2281–2288 (2008)

    Article  Google Scholar 

  24. L. Hao, K. Zhu, G. Lv, A comparative study of nanoscale poly N-(vinyl) pyrrole in polyvinyl butyral coatings for the anti-corrosion property of zinc: nanotubes vs nanoparticles. Prog. Org. Coat. 136, 105251 (2019)

    Article  Google Scholar 

  25. M. Contardi, D. Kossyvaki, P. Picone, Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem. Eng. J. 409, 128144 (2021)

    Article  Google Scholar 

  26. S.J. Monte, Functional Fillers for Plastics, ed. by M. Xanthos (Wiley, 2005), pp. 85–104

  27. A. Baykal, N. Bıtrak, B. Ünal, Polyol synthesis of (polyvinylpyrrolidone) PVP-Mn3O4 nanocomposite. J. Alloys Compd. 502, 199–205 (2010)

    Article  Google Scholar 

  28. P. Motamedi, K. Cadien, XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 315, 104–109 (2014)

    Article  ADS  Google Scholar 

  29. J. Wang, K. Zhang, S. Hao, Simultaneous reduction and surface functionalization of graphene oxide and the application for rubber composites. J. Appl. Polym. Sci. 135, 47375 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Municipal Natural Science Foundation, China (Granted no. 19ZR1418500) and National Natural Science Foundation of China (Granted no. 51172139).

Funding

This work was supported by the (Shanghai Municipal Natural Science Foundation, China) [Granted numbers (19ZR1418500)] and (National Natural Science Foundation of China) [Granted numbers (51172139)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Xie.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Y., Xie, J. et al. Composite NVP-IA/AlN powders with core–shell structure for anti-hydrolysis. Appl. Phys. A 128, 603 (2022). https://doi.org/10.1007/s00339-022-05730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05730-7

Keywords

Navigation