Skip to main content

Advertisement

Log in

Fabrication of high-performance supercapacitors using carbon nanoparticles produced with thermal plasma technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The use of porous carbon materials for fabrication of high-performance supercapacitors has attracted significant attention in recent years especially for applications in supercapacitors. In the present work, carbon nanoparticle is successfully fabricated by the home-made thermal plasma system and acetylene gas as the raw materials. To achieve this, a direct current (DC) plasma torch is employed. Also, a cooling chamber is used to create a neutral environment and collect carbon nanoparticles. Further, the structure and morphology of the nanoparticles are examined. Through the proposed procedure, carbon nanoparticles with spherical geometry and size of about 20 nm can be produced. In this approach, nanoparticles are physically activated by steam while the specific surface area reaches 1165 \(\mathrm{m}^2 \mathrm{g}^{-1}\) and the average pore diameter is measured at 1.7141 nm. The activated carbon nanoparticles are employed in the production of supercapacitor electrodes showing significantly higher specific capacitances reaching up to 853 \(\mathrm{F}\) \(\mathrm{g}^{-1}\). Furthermore, this supercapacitor shows a high energy density of 76 \(\mathrm{Wh}\) \(\mathrm{kg}^{-1}\) at 0.5 \(\mathrm{A}\) \(\mathrm{g}^{-1}\) with competent cycling performance indicative of its potential suitability for use in electrochemical capacitor production. Therefore, the results of this study verify that activated carbon nanoparticles produced with thermal plasma technique possess suitable properties for supercapacitor production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Amirov, R., Asinovsky, E., Isakaev, E.K., Kiselev, V., Thermal plasma torch for synthesis of carbon nanotubes Thermal plasma torch for synthesis of carbon nanotubes. High Temp. Mater. Process. 10(2), 197–206 (2006)

    Article  Google Scholar 

  2. K. Chaitra, R. Vinny, P. Sivaraman, N. Reddy, C. Hu, K. Venkatesh, N. Kathyayini, Koh activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor. J. Energy Chem. 26(1), 56–62 (2017)

    Article  Google Scholar 

  3. H. Chen, M. Ling, L. Hencz, H.Y. Ling, G. Li, Z. Lin, S. Zhang, Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118(18), 8936–8982 (2018)

    Article  Google Scholar 

  4. S. Chen, L. Qiu, H.-M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 120(5), 2811–2878 (2020)

    Article  ADS  Google Scholar 

  5. J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8(3), 941–955 (2015)

    Article  Google Scholar 

  6. K.Z. Elwakeel, G.O. El-Sayed, S.M. Abo El-Nassr, Removal of ferrous and manganeous from water by activated carbon obtained from sugarcane bagasse. Desalin. Water Treat. 55(2), 471–483 (2015)

    Article  Google Scholar 

  7. F. Fabry, G. Flamant, L. Fulcheri, Carbon black processing by thermal plasma. Analysis of the particle formation mechanism. Chem. Eng. Sci. 56(6), 2123–2132 (2001)

    Article  Google Scholar 

  8. L. Fulcheri, N. Probst, G. Flamant, F. Fabry, E. Grivei, X. Bourrat, Plasma processing: a step towards the production of new grades of carbon black. Carbon 40(2), 169–176 (2002)

    Article  Google Scholar 

  9. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001)

    Article  ADS  Google Scholar 

  10. Y. Huang, L. Peng, Y. Liu, G. Zhao, J.Y. Chen, G. Yu, Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8(24), 15205–15215 (2016)

    Article  Google Scholar 

  11. S. Iqbal, H. Khatoon, A.H. Pandit, S. Ahmad, Recent development of carbon based materials for energy storage devices. Mater. Sci. Energy Technol. 2(3), 417–428 (2019)

    Google Scholar 

  12. C. Jin, J. Nai, O. Sheng, H. Yuan, W. Zhang, X. Tao, X.W.D. Lou, Biomass-based materials for green lithium secondary batteries. Energy Environ. Sci. 14(3), 1326–1379 (2021)

    Article  Google Scholar 

  13. R.G. Kaldenhoven, J.M. Hill, Determining the pore structure of activated carbon by nitrogen gas adsorption. Catalysis 30, 41–63 (2018)

    Article  Google Scholar 

  14. S. Khandanjou, M. Ghoranneviss, S. Saviz, The detailed analysis of the spray time effects of the aluminium coating using self-generated atmospheric plasma spray system on the microstructure and corrosion behaviour. Results Phys. 7, 1440–1445 (2017)

    Article  ADS  Google Scholar 

  15. S. Khandanjou, M. Ghoranneviss, S. Saviz, M.R. Afshar, Influences of substrate temperature on microstructure and corrosion behavior of APS Ni50Ti25Al25 inter-metallic coating. Chin. Phys. B 27(2), 028104 (2018)

    Article  ADS  Google Scholar 

  16. T. Kim, G. Jung, S. Yoo, K.S. Suh, R.S. Ruoff, Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores. ACS Nano 7(8), 6899–6905 (2013)

    Article  Google Scholar 

  17. E. Lei, W. Gan, J. Sun, Z. Wu, C. Ma, W. Li, S. Liu, High-performance supercapacitor device with ultrathick electrodes fabricated from all-cellulose-based carbon aerogel. Energy Fuels 35(9), 8295–8302 (2021)

    Article  Google Scholar 

  18. M. Li, H. Xiao, T. Zhang, Q. Li, Y. Zhao, Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7(5), 4716–4723 (2019)

    Article  Google Scholar 

  19. Y. Liang, X. Luo, W. Weng, Z. Hu, Y. Zhang, W. Xu, M. Zhu, Activated carbon nanotube fiber fabric as a high-performance flexible electrode for solid-state supercapacitors. ACS Appl. Mater. Interfaces 13, 28433–28441 (2021)

    Article  Google Scholar 

  20. Y. Liu, J. Chen, B. Cui, P. Yin, C. Zhang, Design and preparation of biomass-derived carbon materials for supercapacitors: a review. C 4(4), 53 (2018)

    Google Scholar 

  21. C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12, 141–151 (2015)

    Article  Google Scholar 

  22. Q. Ma, Y. Yu, M. Sindoro, A.G. Fane, R. Wang, H. Zhang, Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. 2913, 1605361 (2017)

    Article  Google Scholar 

  23. I. Mohammed, C.C. Afagwu, S. Adjei, I.B. Kadafur, M.S. Jamal, A.A. Awotunde, A review on polymer, gas, surfactant and nanoparticle adsorption modeling in porous media. Oil & Gas Sci. Technol.-Revue d’IFP Energies nouvelles 75, 77 (2020)

    Article  Google Scholar 

  24. W.G. Nunes, B.G. Freitas, R.M. Beraldo, R. Maciel Filho, L.M. Da Silva, H. Zanin, A rational experimental approach to identify correctly the working voltage window of aqueous-based supercapacitors. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  25. S. Orazbayev, A. Zhunisbekov, T. Ramazanov, D. Omirbekov, M. Dosbolayev, M. Gabdullin, R. Zhumadylov, Synthesis of carbon nanoparticles in combined RF-DC plasma. Mater. Today Proc. 5(11), 22819–22824 (2018)

    Article  Google Scholar 

  26. M. Pacheco, J. Pacheco, M. Valdivia, L. Bernal, R. Valdivia, A. Huczko, R. López-Callejas, Synthesis of carbon nanostructures by using thermal plasma torch. Braz. J. Phys. 34, 1684–1688 (2004)

    Article  ADS  Google Scholar 

  27. S. Palisoc, J.M. Dungo, M. Natividad, Low-cost supercapacitor based on multi-walled carbon nanotubes and activated carbon derived from Moringa oleifera fruit shells. Heliyon 61, e03202 (2020)

    Article  Google Scholar 

  28. H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654–668 (2010)

    Article  ADS  Google Scholar 

  29. J. Phiri, J. Dou, T. Vuorinen, P.A. Gane, T.C. Maloney, Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4(19), 18108–18117 (2019)

    Article  Google Scholar 

  30. B.P.C. Rao, D.J. Thiruvadigal, S. Ramaswamy, C. Gopalakrishnan, Synthesis of carbon nanosheets and carbon nanoparticles by RF-plasma enhanced chemical vapor deposition. Int. J. Nanosci. 8(01n02), 29–33 (2009)

    Article  Google Scholar 

  31. E. Redondo, L.W. Le Fevre, R. Fields, R. Todd, A.J. Forsyth, R.A. Dryfe, Enhancing supercapacitor energy density by mass-balancing of graphene composite electrodes. Electrochim. Acta 360, 136957 (2020)

    Article  Google Scholar 

  32. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  ADS  Google Scholar 

  33. X.-L. Su, M.-Y. Cheng, L. Fu, J.-H. Yang, X.-C. Zheng, X.-X. Guan, Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins. J. Power Sources 362, 27–38 (2017)

    Article  ADS  Google Scholar 

  34. L. Szymanski, Z. Kolacinski, S. Wiak, G. Raniszewski, L. Pietrzak, Synthesis of carbon nanotubes in thermal plasma reactor at atmospheric pressure. Nanomaterials 7(2), 45 (2017)

    Article  Google Scholar 

  35. H. Tan, X. Wang, D. Jia, P. Hao, Y. Sang, H. Liu, Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors. J. Mater. Chem. A5(6), 2580–2591 (2017)

    Article  Google Scholar 

  36. S. Zhang, X. Shi, X. Chen, D. Zhang, X. Liu, Z. Zhang, E. Mijowska, Large-scale and low-cost motivation of nitrogen-doped commercial activated carbon for high-energy-density supercapacitor. ACS Appl. Energy Mater. 2(6), 4234–4243 (2019)

    Article  Google Scholar 

  37. Z. Zhang, T. Guan, X. Zhang, L. Shen, N. Bao, High-strength-reduced graphene oxide/carboxymethyl cellulose composite fibers for high-performance flexible supercapacitors. Ind. Eng. Chem. Res. 60, 8753–8761 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrooz Saviz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moayedi, M., Saviz, S., Dorranian, D. et al. Fabrication of high-performance supercapacitors using carbon nanoparticles produced with thermal plasma technique. Appl. Phys. A 128, 588 (2022). https://doi.org/10.1007/s00339-022-05725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05725-4

Keywords

Navigation