Skip to main content

Advertisement

Log in

Prediction of the pressure-induced phase transition, mechanical properties, and electronic structures for ScB4 via first principle calculations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural phase transition, phase stability, mechanical properties, and electronic structures of ScB4 are investigated in the pressure range of 0–100 GPa via first principle calculations. A new ground-state structure P4/mbm is discovered by the structural substitution for ScB4, where the P4/mbm phase transforms to Cmcm at 4.8 GPa and the Cmcm phase transforms to Pnma at 8.7 GPa, respectively. The conical structure of Sc–B–Sc and the annular structure of B facilitate the structural stability and mechanical properties of ScB4. The P4/mbm, Cmcm and Pnma phases of ScB4 are thermodynamically, dynamically and mechanically stable in accordance with the calculated formation enthalpies, phonon dispersions and elastic constants, respectively. The establishment of new convex hull diagrams has driven the development of stable structures of compounds in the Sc-B system. Both the Cmcm and Pnma phases of ScB4 are hard phases with Vickers hardness of 35.0 and 31.4 GPa at ambient and high pressures, respectively. The electronic structures of ScB4 are calculated adopting the GGA + U approach, which exhibits metallic properties at both zero and high pressures. The density of states, electron localization function and valence electron density (VED) demonstrate that the Cmcm and Pnma phases of ScB4 have stronger B–B and B–Sc covalent bonds as well as higher VED, which lead to their high hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.Y. Chung, M.B. Weinberger, J.B. Levine, R.W. Cumberland, A. Kavner, J.M. Yang, S.H. Tolbert, R.B. Kaner, Science 316, 436 (2007)

    Article  ADS  Google Scholar 

  2. B. Chu, D. Li, F. Tian, D. Duan, X. Sha, Y. Lv, H. Zhang, B. Liu, T. Cui, Sci. Rep. 5, 10500 (2015)

    Article  ADS  Google Scholar 

  3. M. Zhang, H. Liu, Q. Li, B. Gao, Y. Wang, H. Li, C. Chen, Y. Ma, Phys. Rev. Lett. 114, 015502 (2015)

    Article  ADS  Google Scholar 

  4. K. Kotmool, T. Bovornratanaraks, U. Pinsook, R. Ahuja, J. Phys. Chem. C 120, 23165 (2016)

    Article  Google Scholar 

  5. X. Li, F. Peng, Phys. Chem. Chem. Phys. 21, 15609 (2019)

    Article  Google Scholar 

  6. P. Li, R. Zhou, X.C. Zeng, A.C.S. Appl. Mater. Inter. 7, 15607 (2015)

  7. A.G. Kvashnin, H.A. Zakaryan, C. Zhao, Y. Duan, Y.A. Kvashnina, C. Xie, H. Dong, A.R. Oganov, J. Phys. Chem. Lett. 9, 3470 (2018)

    Article  Google Scholar 

  8. R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308, 1268 (2005)

    Article  Google Scholar 

  9. F. Occelli, P. Loubeyre, R. LeToullec, Nat. Mater. 2, 151 (2003)

    Article  ADS  Google Scholar 

  10. J.-C. Zheng, Phys. Rev. B 72, 052105 (2005)

    Article  ADS  Google Scholar 

  11. V.L. Solozhenko, O.O. Kurakevych, D. Andrault, Y. Le Godec, M. Mezouar, Phys. Rev. Lett. 102, 015506 (2009)

    Article  ADS  Google Scholar 

  12. D. He, Y. Zhao, L. Daemen, J. Qian, T.D. Shen, T.W. Zerda, Appl. Phys. Lett. 81, 643 (2002)

    Article  ADS  Google Scholar 

  13. V.L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, D.C. Rubie, Appl. Phys. Lett. 78, 1385 (2001)

    Article  ADS  Google Scholar 

  14. H. Gou, N. Dubrovinskaia, E. Bykova, A.A. Tsirlin, D. Kasinathan, W. Schnelle, A. Richter, M. Merlini, M. Hanfland, A.M. Abakumov, D. Batuk, G. Van Tendeloo, Y. Nakajima, A.N. Kolmogorov, L. Dubrovinsky, Phys. Rev. Lett. 111, 157002 (2013)

    Article  ADS  Google Scholar 

  15. H. Niu, J. Wang, X.-Q. Chen, D. Li, Y. Li, P. Lazar, R. Podloucky, A.N. Kolmogorov, Phys. Rev. B 85, 144116 (2012)

    Article  ADS  Google Scholar 

  16. Q. Gu, G. Krauss, W. Steurer, Adv. Mater. 20, 3620 (2008)

    Article  Google Scholar 

  17. R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner, J. Am. Chem. Soc. 127, 7264 (2005)

    Article  Google Scholar 

  18. X. Li, Y. Tao, F. Peng, J. Alloys Compd. 687, 579 (2016)

    Article  Google Scholar 

  19. Y. Liang, Y. Zhang, H. Jiang, L. Wu, W. Zhang, K. Heckenberger, K. Hofmann, A. Reitz, F.C. Stober, B. Albert, Chem. Mater. 31, 1075 (2019)

    Article  Google Scholar 

  20. I. Harran, Y. Chen, H. Wang, Y. Ni, M.M.E. Ali, Comp. Mater. Sci. 162, 69 (2019)

    Article  Google Scholar 

  21. K. Kotmool, P. Tsuppayakorn-aek, T. Kaewmaraya, U. Pinsook, R. Ahuja, T. Bovornratanaraks, J. Phys. Chem. C 124, 14804 (2020)

    Article  Google Scholar 

  22. G. Levchenko, A. Lyashchenko, V. Baumer, A. Evdokimova, V. Filippov, Y. Paderno, N. Shitsevalova, J. Solid State Chem. 179, 2949 (2006)

    Article  ADS  Google Scholar 

  23. G. Akopov, M.T. Yeung, Z.C. Sobell, C.L. Turner, C.-W. Lin, R.B. Kaner, Chem. Mater. 28, 6605 (2016)

    Article  Google Scholar 

  24. A. Pediaditakis, S. Haseloff, H. Hillebrecht, Solid State Sci. 13, 1465 (2011)

    Article  ADS  Google Scholar 

  25. T. Tanaka, S. Okada, V. Gurin, J. Alloys Compd. 267, 211 (1998)

    Article  Google Scholar 

  26. T. Bai, G. Zhang, Y. Zhao, L. Chen, B. Mu, Y. Han, Q. Wei, Mol. Phys. 118, e1603411 (2019)

    Article  ADS  Google Scholar 

  27. B.-H. Chu, Y. Zhao, Chin. Phys. B 30, 076107 (2021)

    Article  ADS  Google Scholar 

  28. K. Zhao, Q. Wang, W. Li, Q. Yang, H. Yu, F. Han, H. Liu, S. Zhang, Phys. Rev. B 105, 094104 (2022)

    Article  ADS  Google Scholar 

  29. M. Segall, P.J. Lindan, M.A. Probert, C.J. Pickard, P.J. Hasnip, S. Clark, M. Payne, J. Phys. Condens. Matter 14, 2717 (2002)

    Article  ADS  Google Scholar 

  30. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, Z. Krist.-Cryst. Mater. 220, 567 (2005)

    Article  Google Scholar 

  31. L.A. Constantin, J.P. Perdew, J.M. Pitarke, Phys. Rev. B 79, 075126 (2009)

    Article  ADS  Google Scholar 

  32. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Article  Google Scholar 

  35. B. Karki, G. Ackland, J. Crain, J. Phys. Condens. Matter 9, 8579 (1997)

    Article  ADS  Google Scholar 

  36. Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  ADS  Google Scholar 

  37. R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  38. X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997)

    Article  ADS  Google Scholar 

  39. V.V. Anisimov, I.I. Solovyev, M.A. Korotin, M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  40. V.I. Anisimov, F. Aryasetiawan, A. Lichtenstein, J. Phys. Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  41. N. Ma, T. Wang, N. Li, Y. Li, J. Fan, Appl. Surf. Sci. 571, 151275 (2022)

    Article  Google Scholar 

  42. Y.-Y. Fu, Y.-W. Li, H.-M. Huang, Chin. Phys. Lett. 31, 116201 (2014)

    Article  ADS  Google Scholar 

  43. Y. Wang, T. Yao, L.M. Wang, J. Yao, H. Li, J. Zhang, H. Gou, Dalton T. 42, 7041 (2013)

    Article  Google Scholar 

  44. S. Wei, D. Li, Y. Lv, Z. Liu, C. Xu, F. Tian, D. Duan, B. Liu, T. Cui, Phys. Chem. Chem. Phys. 18, 18074 (2016)

    Article  Google Scholar 

  45. X. Zhao, M.C. Nguyen, C.Z. Wang, K.M. Ho, J. Phys. Condens. Matter 26, 455401 (2014)

    Article  Google Scholar 

  46. B. Wang, D.Y. Wang, Y.X. Wang, J. Alloys Compd. 573, 20 (2013)

    Article  Google Scholar 

  47. M.-M. Zhong, C. Huang, C.-L. Tian, Int. J. Mod. Phys. B 31, 1750131 (2017)

    Article  ADS  Google Scholar 

  48. A. Knappschneider, C. Litterscheid, N.C. George, J. Brgoch, N. Wagner, J. Beck, J.A. Kurzman, R. Seshadri, B. Albert, Angew. Chem. Int. Ed. 53, 1684 (2014)

    Article  Google Scholar 

  49. A.N. Kolmogorov, S. Shah, E.R. Margine, A.F. Bialon, T. Hammerschmidt, R. Drautz, Phys. Rev. Lett. 105, 217003 (2010)

    Article  ADS  Google Scholar 

  50. X. Li, H. Wang, J. Lv, Z. Liu, Phys. Chem. Chem. Phys. 18, 12569 (2016)

    Article  Google Scholar 

  51. A.R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C.W. Glass, Z. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, Nature 457, 863 (2009)

    Article  ADS  Google Scholar 

  52. S.-C. Zhu, X.-Z. Yan, S. Fredericks, Y.-L. Li, Q. Zhu, Phys. Rev. B 98, 214116 (2018)

    Article  ADS  Google Scholar 

  53. H. Fujihisa, Y. Akahama, H. Kawamura, Y. Gotoh, H. Yamawaki, M. Sakashita, S. Takeya, K. Honda, Phys. Rev. B 72, 132103 (2005)

    Article  ADS  Google Scholar 

  54. D.M. Hoat, Comput. Condens. Matte. 21, e00406 (2019)

    Article  Google Scholar 

  55. M. Zhang, H. Wang, H. Wang, X. Zhang, T. Iitaka, Y. Ma, Inorg. Chem. 49, 6859 (2010)

    Article  Google Scholar 

  56. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  57. J. Haines, J. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  58. S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  59. X.-Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)

    Article  Google Scholar 

  60. J. Xu, A.J. Freeman, Phys. Rev. B 41, 12553 (1990)

    Article  ADS  Google Scholar 

  61. P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Phys. Rev. B 63, 045115 (2001)

    Article  ADS  Google Scholar 

  62. A. Savin, R. Nesper, S. Wengert, T.F. Fässler, Angew. Chem. Int. Ed. Engl. 36, 1808 (1997)

    Article  Google Scholar 

  63. S.-H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Nature 399, 132 (1999)

    Article  ADS  Google Scholar 

  64. X. Sha, N. Xiao, Y. Guan, X. Yi, J. Mater. Sci. Technol. 34, 1953 (2018)

    Article  Google Scholar 

  65. H. Li, S. Ma, L. Chen, Z. Yu, Front. Phys. 8, 364 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Fund Project of Colleges and Universities in Gansu Province (No. 2020A-039), the Key Natural Science Foundation of Gansu Province (No. 20JR5RA427), the Natural Science Foundation for Distinguished Young Scholars of Gansu Province (No. 145RJDA323), the Key Talent Foundation of Gansu Province (No. 2020RCXM100), and the Industrial Support and Guidance Project of Colleges and Universities of Gansu Province (No. 2021CYZC-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Song or Xiao-Wei Sun.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YM., Chen, MR., Song, T. et al. Prediction of the pressure-induced phase transition, mechanical properties, and electronic structures for ScB4 via first principle calculations. Appl. Phys. A 128, 600 (2022). https://doi.org/10.1007/s00339-022-05717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05717-4

Keywords

Navigation