Skip to main content
Log in

Comparative study on coprecipitation and microwave hydrothermal synthesis of magnesium aluminum spinel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

MgAl2O4 was synthesized by microwave hydrothermal method and coprecipitation method, respectively. X-ray diffractometer (XRD), scanning electron microscope (SEM), BET, Archimedes method and an automatic micro-Vickers hardness tester were used to characterize the phase composition, microstructure, powder activity, relative density, and hardness of MgAl2O4. The results showed that, compared with the microwave hydrothermal synthesis method, the powder synthesized by the coprecipitation method was purer, the particle size was smaller and the distribution was more uniform, and the particles had no agglomeration phenomenon. The specific surface area of the powder synthesized by the coprecipitation method was 79.011 m2/g, three times larger than the powder synthesized by microwave hydrothermal synthesis. The optimum sintering temperature of MgAl2O4 synthesized by coprecipitation method or microwave hydrothermal method is 1700 °C. At this temperature, the sintered sample synthesized by coprecipitation method has the densest microstructure, the relative density is 98.83% and the hardness is 1411 kgf/mm2; while the relative density of the sintered sample synthesized by the microwave hydrothermal synthesis method is 92.77% and the hardness is 1407 kgf/mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Yu, X.D. Luo, G.D. Zhang, Z.P. Xie, H.G. Jin, F.F. Liu, Effect of BN on property of magnesium-based carbon-containing refractories. J. Synth. Cryst. 44, 227–242 (2015)

    Google Scholar 

  2. N.M. Khalil, M.B. Hassan, E.M. Ewais, F.A. Saleh, Sintering, mechanical and refractory properties of MA spinel prepared via coprecipitation and sol–gel techniques. J. Alloys Compd. 496, 600–607 (2010)

    Article  Google Scholar 

  3. F. Mohammadi, S. Otroj, M.R. Nilforushan, Effect of MgCl2 addition on the sintering behavior of MgAl2O4 spinel and formation of nano-particles. Sci. Sinter. 46, 157–168 (2014)

    Article  Google Scholar 

  4. R. Sarkar, S.J. Sahoo, Effect of raw materials on formation and densification of magnesium aluminate spinel. Ceram. Int. 40, 16719–16725 (2014)

    Article  Google Scholar 

  5. D.S. Ju, G.F. Fang, C. Xi-Ping, Effect of Cr2O3 on slag resistance of magnesia spinel refractory. Refractories 28, 189–192 (1994)

    Google Scholar 

  6. C.B. Huang, Situ-strengthened and toughened Mg-Al Spinel transparent ceramics. J. Synth. Cryst. 37, 800–804 (2008)

    Google Scholar 

  7. D.Z. Fan, X.X. Mo, R.S. Weng, F. Qin, Study on synthesis of active spinel powder in different condition. Refract. Ind. Ceram. 6, 329–331 (1998)

    Google Scholar 

  8. L. Durães, T. Matias, A.M. Segadães, J. Campos, A. Portugal, MgAl2O4 spinel synthesis by combustion and detonation reactions: a thermochemical evaluation. J. Eur. Ceram. Soc. 32, 3161–3170 (2012)

    Article  Google Scholar 

  9. R.P. Li, J.H. Liu, L. Xu, J.W. Zhou, Microwave idrothermal synthesis of magnesium-aluminium spinel. Ceram. Int. 46, 29207–29211 (2020)

    Article  Google Scholar 

  10. S. Angappan, L.J. Berchmans, C.O. Augustin, Sintering behaviour of MgAl2O4-a prospective anode material. Mater. Lett. 58, 2283–2289 (2004)

    Article  Google Scholar 

  11. S. Hirai, H. Murakami, H. Katayama, Effect of additives on the formation of MgAl2O4 from MgO and Al2O3. J. Jpn. I Met. 55, 166–171 (1991)

    Article  Google Scholar 

  12. W. Zhan, Z.F. Wang, B.G. Zhang, X.T. Wang, Synthesis of magnesium-aluminum spinel by low heat solid state method. Rare Metal Mater. Eng. 38, 4 (2009)

    Google Scholar 

  13. Y. Wen, X. Liu, X. Chen, Q. Jia, R. Yu, T. Ma, Effect of heat treatment conditions on the growth of MgAl2O4 nanoparticles obtained by sol-gel method. Ceram. Int. 43(17), 15246–15253 (2017)

    Article  Google Scholar 

  14. C.R. Bickmore, K.F. Waldner, D.R. Treadwell, R.M. Laine, Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminium double oxide. J. Am. Ceram. Soc. 79, 1419–1423 (1996)

    Article  Google Scholar 

  15. C.T. Wang, L.S. Liu, Preparation of MgAl2o4 spinel power via freeze-drying of alkoxide precursors. J. Am. Ceram. Soc. 75, 2240 (1991)

    Article  Google Scholar 

  16. R. Boulesteix, A. Goldstein, C. Perrière, A. Matre, C. Sallé, Transparent ceramics green-microstructure optimization by pressure slip-casting: Cases of YAG and MgAl2O4. J. Eur. Ceram. Soc. 41, 2085–2095 (2021)

    Article  Google Scholar 

  17. W. Tabaza, H.C. Swart, R.E. Kroon, Luminescence of Ce doped MgAl2O4 prepared by the combustion method. Physica B 439, 109–114 (2014)

    Article  ADS  Google Scholar 

  18. J.H. Liu, Synthesis, sintering and application of magnesium-aluminum spinel, (Metallurgical Industry Press, Beijing, p. 027809 (2019)

    Google Scholar 

  19. Y.F. Shan, Preparation and characterization of magnesium aluminum spinel ultrafine powder, (Wuhan University of Science and Technology, Wuhan (2015)

    Google Scholar 

  20. C.W. Zhang, L.N. Zhang, N. Zhang, X.Y. Wang, F. Wang, Preparation and characterization of MgAl2O4 spinel as catalyst support. J. Shaanxi Univ. Sci. Technol. (Nat. Sci. Ed.). 034, 42–46 (2016)

    Google Scholar 

  21. A. Wajler, H. Tomaszewskia, E. Dro-Cieślab, H. Węglarza, Z. Kaszkurc, Study of magnesium aluminate spinel formation from carbonate precursors. J. Eur Ceram. Soc. 28, 2495–2500 (2008)

    Article  Google Scholar 

  22. K. Serivalsatit, S. Teerasoradech, A. Saelee, Synthesis of magnesium aluminate spinel nanoparticles by co-precipitation. method: the influences of precipitants Suranaree. J. Sci. Technol. 19, 265–270 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Yunnan Fundamental Research Projects (Grant No. 202001AT070203) and the construction of high-level talents of Kunming University of Science and Technology (No. 1411909413).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Liu or Runping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, J., Li, R. et al. Comparative study on coprecipitation and microwave hydrothermal synthesis of magnesium aluminum spinel. Appl. Phys. A 128, 590 (2022). https://doi.org/10.1007/s00339-022-05716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05716-5

Keywords

Navigation