Skip to main content
Log in

3D phase-field simulations of lamellar and fibrous growth during discontinuous precipitation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

3D phase field simulations have been used to investigate the effect of the third dimension on morphological instabilities of lamellar growing precipitates during discontinuous precipitation. 3D simulations offer the possibility to act on the reaction front as a surface. However, no changes would be expected, in the system’s behavior along the third dimension, with regard to 2D systems’ in terms of translation invariance. The effect of a numerically induced noise, on the behavior of the growing precipitate, as a Saffman–Taylor finger in the presence of volume diffusion is reported. The numerical noise consists of breaking symmetry by acting on the reaction front as a surface. As our 3D system consists of a set of planes forming the growing \(\beta\) precipitate along with the \(\alpha\) depleted lamellar phase, a certain part of the reaction front (1 or more given planes) have been allowed to grow faster than the others; which has resulted in a symmetry breaking leading to fibrous growth. It turns out that even with breaking symmetry the oscillatory instability is systematically followed by a tip-splitting and that fibers are rather due to the decrease in steady state velocity associated to the lamellar thickness increase. A new method to tune the steady state velocity is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. I. Manna, S.K. Pabi, W. Gust, Discontinuous reactions in solids. Int. Materials Rev. 46(2), 53–91 (2001)

    Article  Google Scholar 

  2. D.B. Williams, J.W. Edington, The discontinuous precipitation reaction in dilute al-li alloys. Acta Metallurgica 24(4), 323–332 (1976)

    Article  Google Scholar 

  3. P. Zieba. Recent developments on discontinuous precipitation. Archives of Metallurgy and Materials, vol. 62(No 2), 2017

  4. J.W. Cahn, Acta Metallurgica 7(1), 18–28 (1959)

    Article  Google Scholar 

  5. E.A. Brener, D.E. Temkin, Theory of diffusional growth in cellular precipitation. Acta Materialia 47(14), 3759–3765 (1999)

    Article  ADS  Google Scholar 

  6. Lynda Amirouche, Mathis Plapp, Phase-field modeling of the discontinuous precipitation reaction. Acta Materialia 57(1), 237–247 (2009)

    Article  ADS  Google Scholar 

  7. Philip Nash and Yang Zhou. Invited viewpoint: in situ nanostructured lamellar composites. Journal of Materials Science, pages 1–7, 2022

  8. AL Rocha, IG Solórzano, and JB Vander Sande. Heterogeneous and homogeneous nanoscale precipitation in dilute cu–co alloys. Materials Science and Engineering: C, 27(5-8):1215–1221, 2007

  9. I.G. Solorzano, G.R. Purdy, Interlamellar spacing in discontinuous precipitation. Metallurgical Materials Trans. A 15(6), 1055–1063 (1984)

    Article  ADS  Google Scholar 

  10. J.C. Spadotto, M.G. Burke, I.G. Solorzano, Early stages of discontinuous precipitation reaction in an advanced cr-fe-ni alloy isothermally aged at 800\(^{\circ }\)c. Materials Characterization 183, 111628 (2022)

    Article  Google Scholar 

  11. Thien C. Duong, Robert E. Hackenberg, Vahid Attari, Alex Landa, Patrice E.A. Turchi, and Raymundo Arroyave. Investigation of the discontinuous precipitation of u-nb alloys via thermodynamic analysis and phase-field modeling. Computational Materials Science, 175:109573, 2020

  12. Lynda Amirouche and Mathis Plapp. In Solid-Solid Phase Transformations in Inorganic Materials, volume 172 of Solid State Phenomena, pages 549–554. Trans Tech Publications, 6 2011

  13. NM Suguihiro and IG Solórzano. On the initiation, growth, and coarsening of discontinuous precipitation in cu-10 at.% co alloy. J. Materials Sci., 51(1):71–81, 2016

  14. N.M. Suguihiro, I.G. Solórzano, Nano-scale crystallographic aspects of discontinuous precipitation and coarsening reactions in cu-10% co alloy. Microsc Microanal. 25(S2), 1970–1971 (2019)

    Article  ADS  Google Scholar 

  15. A. Perovic, G.R. Purdy, Discontinuous precipitation in cuco alloys. Acta Metallurgica 29(1), 53–64 (1981)

    Article  Google Scholar 

  16. M. Goto, T. Yamamoto, S.Z. Han, T. Utsunomiya, S. Kim, J. Kitamura, J.H. Ahn, S.H. Lim, J. Lee, Simultaneous increase in electrical conductivity and fatigue strength of cu-ni-si alloy by utilizing discontinuous precipitates. Materials Lett. 288, 129353 (2021)

    Article  Google Scholar 

  17. Satoshi Semboshi, Shigeo Sato, Akihiro Iwase, Takayuki Takasugi, Discontinuous precipitates in age-hardening cunisi alloys. Materials Characterization 115, 39–45 (2016)

    Article  Google Scholar 

  18. Andrea Parisi, Mathis Plapp, Stability of lamellar eutectic growth. Acta Materialia 56(6), 1348–1357 (2008)

    Article  ADS  Google Scholar 

  19. Andrea Parisi, Mathis Plapp, Defects and multistability in eutectic solidification patterns. EPL (Europhysics Letters) 90(2), 26010 (2010)

    Article  ADS  Google Scholar 

  20. C. Zener, Trans. AIME 167, 550–595 (1946)

    Google Scholar 

  21. M. Hillert, Acta Metallurgica 30(8), 1689–1696 (1982)

    Article  Google Scholar 

  22. L.M. Klinger, Y.J.M. Brechet, and G.R. Purdy. On velocity and spacing selection in discontinuous precipitation-i. simplified analytical approach. Acta Materialia, 45(12):5005 – 5013, 1997

  23. Nele Moelans, Bart Blanpain, Patrick Wollants, An introduction to phase-field modeling of microstructure evolution. Calphad 32(2), 268–294 (2008)

    Article  Google Scholar 

  24. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification. Ann. Rev. Materials Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  25. Mostafa Jamshidian, P Thamburaja, and Timon Rabczuk. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films. J. Computat. Phys., 327:779–798, 2016

  26. Mohamad Jafari, Mostafa Jamshidian, Saeed Ziaei-Rad, Dierk Raabe, Franz Roters, Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods. Int. J. Plasticity 99, 19–42 (2017)

    Article  Google Scholar 

  27. MS Ghaffari Rad, Mohammad Gelooyak Jafari, Mostafa Jamshidian, S Akbaran, Mohammad Silani, and Timon Rabczuk. Phase field modeling of normal and stressed grain growth: The effect of rve size and microscopic boundary conditions. Int. J. Multiscale Comput. Eng., 19(1), 2021

  28. Mohammed Ashour, Navid Valizadeh, Timon Rabczuk, Isogeometric analysis for a phase-field constrained optimization problem of morphological evolution of vesicles in electrical fields. Comput. Methods Appl. Mech. Eng. 377, 113669 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. Navid Valizadeh, Timon Rabczuk, Isogeometric analysis for phase-field models of geometric pdes and high-order pdes on stationary and evolving surfaces. Comput. Methods Appl. Mech. Eng. 351, 599–642 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. Navid Valizadeh, Timon Rabczuk, Isogeometric analysis of hydrodynamics of vesicles using a monolithic phase-field approach. Comput. Methods Appl. Mech. Eng. 388, 114191 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.S. Langer, Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1–28 (1980)

    Article  ADS  Google Scholar 

  32. E. Brener, H. Müller-Krumbhaar, Y. Saito, D. Temkin, Crystal growth in a channel: numerical study of the one-sided model. Phys. Rev. E 47, 1151–1155 (1993)

    Article  ADS  Google Scholar 

  33. R. Folch, M. Plapp, Quantitative phase-field modeling of two-phase growth. Phys. Rev. E 72, 011602 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Folch, M. Plapp, Towards a quantitative phase-field model of two-phase solidification. Phys. Rev. E 68, 010602 (2003)

    Article  ADS  Google Scholar 

  35. Mathis Plapp, Marcus Dejmek, Stability of hexagonal solidification patterns. EPL (Europhysics Letters) 65(2), 276 (2004)

    Article  ADS  Google Scholar 

  36. E.A. Brener, M.B. Gellikman, D.E. Temkin, Growth of a needle-shaped crystal in a channel. Sov. Phys. JETP 67, 1002 (1988)

    ADS  Google Scholar 

  37. D.B. Williams, E.P. Butler, Grain boundary discontinuous precipitation reactions. Int. Metals Rev. 26(1), 153–183 (1981)

    Google Scholar 

  38. Esteban Meca, Mathis Plapp, Phase-field study of the cellular bifurcation in dilute binary alloys. Metallurgical Materials Trans. A 38(7), 1407–1416 (2007)

    Article  ADS  Google Scholar 

  39. R. Racek, G. Lesoult, M. Turpin, The cd-sn eutectic structures at low growth rates. J. Crystal Growth 22(3), 210–218 (1974)

    Article  ADS  Google Scholar 

  40. J.D. Hunt, J.P. Chilton, An investigation of lamella-] rod transition in binary eutectics. J. Inst. Metals 91(10), 338 (1963)

    Google Scholar 

  41. K.A. Jackson and J.D. Hunt. Lamellar and rod eutectic growth. In Pierre Pelce, editor, Dynamics of Curved Fronts, pages 363 – 376. Academic Press, San Diego, 1988

Download references

Acknowledgements

Thanks are due to Mathis Plapp for his great assistance and for all the fruitful discussions. A. R.L would like to thank Mathis Plapp for providing means to perform some of the expensive runs. L. A. thanks Pawel Zeiba for his fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda Amirouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladjeroud, A.R., Amirouche, L. 3D phase-field simulations of lamellar and fibrous growth during discontinuous precipitation. Appl. Phys. A 128, 582 (2022). https://doi.org/10.1007/s00339-022-05710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05710-x

Keywords

Navigation