Abstract
Terbium-doped zinc oxide microstructures with a hexagonal wurtzite structure were synthesized by a chemical bath deposition (CBD) method on p-type (100) silicon. The effects of the amount of Tb incorporated and heat treatment on the physical properties were explored. X-ray photoelectron spectroscopy (XPS) confirms the simultaneous insertion of Tb3+ and Tb4+ into the ZnO matrix. An increase in the Tb concentration up to 4.21% with annealing temperature is shown by energy-dispersive X-ray (EDX) measurements. Scanning electron microscopy (SEM) images show the formation of micropod ZnO with a perfectly smooth hexagonal sidewall shape. This structure of doped ZnO remained stable, although distortion of the distance and tetrahedral bonds was confirmed by XRD analysis. The luminescence spectra of the doped micropods did not show the Tb ion emission lines, proving that no energy transfer from the host to the rare-earth ions occurred. However, the visible-band emission was deformed, and the International Commission on Illumination (CIE) color emission shifted to green as the concentration of Tb increased. Near white-light emission was observed for Tb-doped ZnO micropods with concentrations higher than 1.4% and annealed at 300 °C. The color emission of the Tb-doped ZnO micropods can be tuned by varying the concentrations of Tb in the ZnO host and/or the annealing temperature, which is an interesting aspect for solid-state lighting applications. The dependence of electrical parameters on dopant concentration and annealing temperature was explored by current-–voltage (I–V) measurements, which showed a small change in barrier height with increasing dopant concentration.
This is a preview of subscription content, access via your institution.














References
D. Daksh, Y.K. Agrawal, Rare earth-doped zinc oxide nanostructures: a review. Rev. Nanosci. Nanotechnol. 5, 1–27 (2016)
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)
B. Djurisic, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. 34, 191–259 (2010)
M.-Y. Lu, M.-P. Lu, S.-J. You, C.-W. Chen, Y.-J. Wang, Quantifying the barrier lowering of ZnO Schottky nanodevices under UV light. Sci. Rep. 5, 15123 (2015)
X.M. Zhang, M.Y. Lu, Y. Zhang, L.J. Chen, Z.L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767–2770 (2009)
A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007)
V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, H.C. Swart, Rare Earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. ACS Photonics 4, 2613–2637 (2017)
H. Yu, L. Xia, X. Dong, X. Zhao, Preparation and luminescent characteristic of Eu2O3-ZnO/(SBA-15) composite materials. J. Lumin. 158, 19–26 (2015)
L. Yang, Zh. Jiang, J. Dong, A. Pan, X. Zhuang, The study the crystal defect-involved energy transfer process of Eu3+ doped ZnO lattice. Mater. Lett. 129, 65–67 (2014)
L. Luo, F.Y. Huang, G.J. Guo, P.A. Tanner, J. Chen, Y.T. Tao, J. Zhuo, L.Y. Yuan, S.Y. Chen, Y.L. Chueh, H.H. Fan, K.F. Li, K.W. Cheah, Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+-doped ZnO nanocrystals. J. Nanosci. Nanotechnol. 12, 2417–2423 (2012)
N.A. Althumairi, I. Baig, T.S. Kayed, A. Mekki, A. Lusson, V. Sallet, A. Majid, A. Fouzri, Characterization of Eu doped ZnO micropods prepared by chemical bath deposition on p-Si substrate. Vacuum 198, 110874 (2022)
G. Greczynski, L. Hultman, Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf. Sci. 451, 99–103 (2018)
P.-C. Lee, Y.-C. Ou, R.-C. Wang, C.-P. Liu, Enhanced output performance of ZnO thin film triboelectric nanogenerators by leveraging surface limited Ga doping and insulting bulk. Nano Energy 89, 106394 (2021)
A. Nouria, A. Beniaiche, B.M. Soucase, H. Guessas, A. Azizi, Photoluminescence study of Eu+3 doped ZnO nanocolumns prepared by electrodeposition method. Optik 139, 104–110 (2017)
M. Shkir, K.V. Chandekar, M. Badria, A.A. Khan, S.A. Mohamed, S. Hamdy, A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10, 1811–1823 (2020)
A. Gokarna, R. Aad, J. Zhou, K. Nomenyo, A. Lusson, P. Miska, G. Lerondel, On the origin of the enhancement of defect related visible emission in annealed ZnO micropods. J. Appl. Phys. 126, 145104 (2019)
J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical (Physical Electronics, Chicago, 1995)
I. Ahmad, M.S. Akhtar, E. Ahmed, M. Ahmad, V. Keller, W.Q. Khan, N.R. Khalid, Rare earth co-doped ZnO photocatalysts: solution combustion synthesis and environmental applications. Sep. Purif. Technol. 237, 116328 (2020)
U. Alam, A. Khan, W. Raza, A. Khan, D. Bahnemann, M. Muneer, Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catal. Today 284, 169–178 (2017)
E.H.H. Hasabeldaim, O.M. Ntwaeaborwa, R.E. Kroon, E. Coetsee, H.C. Swart, Luminescence properties of Eu doped ZnO PLD thin films: the effect of oxygen partial pressure. Superlattices Microstruct. 139, 106432 (2020)
V. Kumar, H.C. Swart, S. Som, V. Kumar, A. Yousif, A. Pandey, S.K.K. Shaat, O.M. Ntwaeaborwa, The role of growth atmosphere on the structural and optical quality of defect free ZnO films for strong ultraviolet emission. Laser Phys. 24, 105704 (2014)
V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 101, 57–60 (2013)
K. Kotsis, V. Staemmler, Ab initio calculations of the O1s XPS spectra of ZnO and Zn oxo compounds. Phys. Chem. Chem. Phys. 8, 1490–1498 (2006)
L. Jiang, J. Li, K. Huang, S. Li, Q. Wang, Z. Sun, T. Mei, J. Wang, L. Zhang, N. Wang, X. Wang, Low-Temperature and solution-processable zinc oxide transistors for transparent electronics. ACS Omega 2, 8990–8996 (2017)
A. Hastir, R.L. Opila, N. Kohli, Z. Onuk, B. Yuan, K. Jones, Virpal, R.C. Singh, Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films. J. Mater. Sci. 52, 8502–8517 (2017)
V. Kumar, S. Som, V. Kumar, V. Kumar, O.M. Ntwaeaborwa, E. Coetsee, H.C. Swart, Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications. Chem. Eng. Sci. 255, 541–552 (2014)
M. Balaguer, C.-Y. Yoo, H.J.M. Bouwmeester, J.M. Serra, Bulk transport and oxygen surface exchange of the mixed ionic–electronic conductor Ce1−x TbxO2−δ (x = 0.1, 0.2, 0.5). J. Mater. Chem. A 1, 10234–10242 (2013)
Y. Zhao, J.-G. Li, M. Guo, X. Yang, Structural and photoluminescent investigation of LTbH/LEuH nanosheets and their color-tunable colloidal hybrids. J. Mater. Chem. C 1, 3584–3592 (2013)
R. Majitha, J. Speich, K.E. Meissner, Mechanism of generation of ZnO microstructures by microwave-assisted hydrothermal approach. Materials 6, 2497–2507 (2013)
K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14, 2575–2591 (2004)
M.A. Vergés, A. Mifsud, C.J. Serna, Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J. Chem. Soc. Faraday Trans. 86, 959–963 (1990)
I. Massoudi, T. Ghrib, A.L. Al-Otaibi, K. Al-Hamadah, S. Al-Malky, M. Al-Otaibi, M. Al-Yatimi, Effect of yttrium substitution on microstructural, optical, and photocatalytic properties of ZnO nanostructures. J. Electron. Mater. 49, 5353–5362 (2020)
L. Arda, The effects of Tb doped ZnO nanorod: an EPR study. J. Magn. Magn. Mater. 475, 493–501 (2019)
A. Srivastava, N. Kumar, K. Prakash Misra, S. Khare, Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant. Electron. Mater. Lett. 10, 703–711 (2014)
A. Fouzri, N. Ahmed Althumairi, V. Sallet, A. Lusson, Characterization of sol gel Zn1−xCaxO thin layers deposited on p-Si substrate by spin-coating method. Opt. Mater. 110, 110519 (2020)
H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (WILEY-VCH, Weinheim, 2009)
L.F. Koao, B.F. Dejene, H.C. Swart, S.V. Motloung, T.E. Motaung, S.P. Hlangothi, Effect of Tb3+ ions on the ZnO nanoparticles synthesized by chemical bath deposition method. Adv. Mater. Lett. 7, 529–535 (2016)
Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)
C.-M. Lin, H.-T. Liu, S.-Y. Zhong, C.-H. Hsu, Y.-T. Chiu, M.-F. Tai, J.-Y. Juang, Y.-C. Chuang, Y.-F. Liao, Structural transitions in nanosized Zn0.97Al0.03O powders under high pressure analyzed by in situ angle-dispersive X-ray diffraction. Materials 9, 561 (2016)
R. Sreeja Sreedharan, R. Reshmi Krishnan, R. Jolly Bose, V.S. Kavitha, S. Suresh, R. Vinodkumar, S.K. Sudheer, V.P. Mahadevan Pillai, Visible luminescence from highly textured Tb3+ doped RF sputtered zinc oxide films. J. Lumin. 184, 273–286 (2017)
R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Devices 2, 51–58 (2017)
C. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 013502 (2009)
F. Otieno, M. Airo, R.M. Erasmus, D.G. Billing, A. Quandt, D. Wamwangi, Effect of thermal treatment on ZnO:Tb3+ nanocrystalline thin films and application for spectral conversion in inverted organic solar cells. RSC Adv. 8, 29274–29282 (2018)
R.K. Verma, K. Kumar, S.B. Rai, Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO–Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials. Solid State Sci. 12, 1146–1151 (2010)
A.D. Sontakke, K. Annapurna, Study on Tb3+ containing high silica and low silica calcium aluminate glasses: Impact of optical basicity. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 94, 180–185 (2012)
T.-H. Fang, Y.-S. Chang, L.-W. Ji, S.D. Prior, W. Water, K.-J. Chen, C.-F. Fang, C.-N. Fang, S.-T. Shen, Photoluminescence characteristics of ZnO doped with Eu3+ powders. J. Phys. Chem. Solids 70, 1015–1018 (2009)
M. Zhong, G. Shan, Y. Li, G. Wang, Y. Liu, Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process. Mater. Chem. Phys. 106, 305–309 (2007)
F.S. Richardson, Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem. Rev. 82, 541–552 (1982)
Y.H. Yang, H.G. Zhu, H.M. Dong, G.W. Yang, Growth and luminescence of Tb-doped ZnO nanocones. Mater. Lett. 124, 32–35 (2014)
P.P. Pal, J. Manam, Color tunable ZnO nanorods by Eu3+ and Tb3+ co-doping for optoelectronic applications. Appl. Phys. A 116, 213–223 (2014)
G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, U. Caldiño, I.V. Kityk, M.A. Mahdi, Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications. Opt. Mater. 72, 380–391 (2017)
A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A. Dutt, Photoluminescence of ZnO nanowires: a review. Nanomaterials (Basel) 10, 857 (2020)
L. Yang, Z. Wang, Z. Zhang, Y. Sun, M. Gao, J. Yang, Y. Yan, Surface effects on the optical and photocatalytic properties of graphene-like ZnO:Eu3+ nanosheets. J. Appl. Phys. 113, 033514 (2013)
J. Georges, Lanthanide-sensitized luminescence and applications to the determination of organic analytes. A review. Analyst 118, 1481–1486 (1993)
S. Sharma, C. Periasamy, A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique. Superlattices Microstruct. 73, 12–21 (2014)
R.N. Gayen, S.R. Bhattacharyya, Electrical characteristics and rectification performance of wet chemically synthesized vertically aligned n-ZnO nanowire/p-Si heterojunction. J. Phys. D Appl. Phys. 49, 115102 (2016)
S. Muniza Faraz, W. Shah, N. Ul Hassan Alvi, O. Nur, Q. Ul Wahab, Electrical characterization of Si/ZnO nanorod PN heterojunction diode. Adv. Condens. Matter Phys. 2020, 1 (2020)
S.K. Akay, S. Sarsıcı, H.K. Kaplan, Determination of electrical parameters of ZnO/Si heterojunction device fabricated by RF magnetron sputtering. Opt. Quantum Electron. 50, 362 (2018)
S.O. Tan, İ Taşcıoğlu, S. Altındal Yerişkin, H. Tecimer, F. Yakuphanoğlu, Illumination dependent electrical data identification of the CdZnO Interlayered metal-semiconductor structures. SILICON 12, 2885–2891 (2020)
A. Das, A. Kushwaha, R. Sivasayan, S. Chakraborty, H. Dutta, A. Karmakar, D. Chi, G. Dalapati, S. Chattopadhyay, Temperature-dependent electrical characteristics of CBD/CBD grown n-ZnO nanowire/p-Si heterojunction diodes. J. Phys. D Appl. Phys. 49, 145105 (2016)
Ş Karataş, N. Yildirim, A. Türüt, Electrical properties and interface state energy distributions of Cr/n-Si Schottky barrier diode. Superlattices Microstruct. 64, 483–494 (2013)
Acknowledgements
The authors take this opportunity to thank the Department of Physics, College of Science at Al Zulfi, Majmaah University, specifically Dr. Ibrahim Shaarany, for the helpful technical assistance with equipment facilities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Althumairi, N.A., Baig, I., Kayed, T.S. et al. Structural, morphological, optical, and electrical studies of Tb-doped ZnO micropods elaborated by chemical bath deposition on a p-Si substrate. Appl. Phys. A 128, 559 (2022). https://doi.org/10.1007/s00339-022-05701-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-022-05701-y
Keywords
- Tb-doped ZnO micropods
- Chemical bath deposition
- XPS analysis
- Photoluminescence
- CIE Chromaticity
- I-V measurement