Skip to main content

Structural, morphological, optical, and electrical studies of Tb-doped ZnO micropods elaborated by chemical bath deposition on a p-Si substrate

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Terbium-doped zinc oxide microstructures with a hexagonal wurtzite structure were synthesized by a chemical bath deposition (CBD) method on p-type (100) silicon. The effects of the amount of Tb incorporated and heat treatment on the physical properties were explored. X-ray photoelectron spectroscopy (XPS) confirms the simultaneous insertion of Tb3+ and Tb4+ into the ZnO matrix. An increase in the Tb concentration up to 4.21% with annealing temperature is shown by energy-dispersive X-ray (EDX) measurements. Scanning electron microscopy (SEM) images show the formation of micropod ZnO with a perfectly smooth hexagonal sidewall shape. This structure of doped ZnO remained stable, although distortion of the distance and tetrahedral bonds was confirmed by XRD analysis. The luminescence spectra of the doped micropods did not show the Tb ion emission lines, proving that no energy transfer from the host to the rare-earth ions occurred. However, the visible-band emission was deformed, and the International Commission on Illumination (CIE) color emission shifted to green as the concentration of Tb increased. Near white-light emission was observed for Tb-doped ZnO micropods with concentrations higher than 1.4% and annealed at 300 °C. The color emission of the Tb-doped ZnO micropods can be tuned by varying the concentrations of Tb in the ZnO host and/or the annealing temperature, which is an interesting aspect for solid-state lighting applications. The dependence of electrical parameters on dopant concentration and annealing temperature was explored by current-–voltage (I–V) measurements, which showed a small change in barrier height with increasing dopant concentration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. D. Daksh, Y.K. Agrawal, Rare earth-doped zinc oxide nanostructures: a review. Rev. Nanosci. Nanotechnol. 5, 1–27 (2016)

    Article  Google Scholar 

  2. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  3. B. Djurisic, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. 34, 191–259 (2010)

    Article  ADS  Google Scholar 

  4. M.-Y. Lu, M.-P. Lu, S.-J. You, C.-W. Chen, Y.-J. Wang, Quantifying the barrier lowering of ZnO Schottky nanodevices under UV light. Sci. Rep. 5, 15123 (2015)

    Article  ADS  Google Scholar 

  5. X.M. Zhang, M.Y. Lu, Y. Zhang, L.J. Chen, Z.L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767–2770 (2009)

    Article  Google Scholar 

  6. A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007)

    Article  ADS  Google Scholar 

  7. V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, H.C. Swart, Rare Earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. ACS Photonics 4, 2613–2637 (2017)

    Article  Google Scholar 

  8. H. Yu, L. Xia, X. Dong, X. Zhao, Preparation and luminescent characteristic of Eu2O3-ZnO/(SBA-15) composite materials. J. Lumin. 158, 19–26 (2015)

    Article  Google Scholar 

  9. L. Yang, Zh. Jiang, J. Dong, A. Pan, X. Zhuang, The study the crystal defect-involved energy transfer process of Eu3+ doped ZnO lattice. Mater. Lett. 129, 65–67 (2014)

    Article  Google Scholar 

  10. L. Luo, F.Y. Huang, G.J. Guo, P.A. Tanner, J. Chen, Y.T. Tao, J. Zhuo, L.Y. Yuan, S.Y. Chen, Y.L. Chueh, H.H. Fan, K.F. Li, K.W. Cheah, Efficient doping and energy transfer from ZnO to Eu3+ ions in Eu3+-doped ZnO nanocrystals. J. Nanosci. Nanotechnol. 12, 2417–2423 (2012)

    Article  Google Scholar 

  11. N.A. Althumairi, I. Baig, T.S. Kayed, A. Mekki, A. Lusson, V. Sallet, A. Majid, A. Fouzri, Characterization of Eu doped ZnO micropods prepared by chemical bath deposition on p-Si substrate. Vacuum 198, 110874 (2022)

    Article  ADS  Google Scholar 

  12. G. Greczynski, L. Hultman, Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf. Sci. 451, 99–103 (2018)

    Article  ADS  Google Scholar 

  13. P.-C. Lee, Y.-C. Ou, R.-C. Wang, C.-P. Liu, Enhanced output performance of ZnO thin film triboelectric nanogenerators by leveraging surface limited Ga doping and insulting bulk. Nano Energy 89, 106394 (2021)

    Article  Google Scholar 

  14. A. Nouria, A. Beniaiche, B.M. Soucase, H. Guessas, A. Azizi, Photoluminescence study of Eu+3 doped ZnO nanocolumns prepared by electrodeposition method. Optik 139, 104–110 (2017)

    Article  ADS  Google Scholar 

  15. M. Shkir, K.V. Chandekar, M. Badria, A.A. Khan, S.A. Mohamed, S. Hamdy, A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10, 1811–1823 (2020)

    Article  ADS  Google Scholar 

  16. A. Gokarna, R. Aad, J. Zhou, K. Nomenyo, A. Lusson, P. Miska, G. Lerondel, On the origin of the enhancement of defect related visible emission in annealed ZnO micropods. J. Appl. Phys. 126, 145104 (2019)

    Article  ADS  Google Scholar 

  17. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical (Physical Electronics, Chicago, 1995)

    Google Scholar 

  18. I. Ahmad, M.S. Akhtar, E. Ahmed, M. Ahmad, V. Keller, W.Q. Khan, N.R. Khalid, Rare earth co-doped ZnO photocatalysts: solution combustion synthesis and environmental applications. Sep. Purif. Technol. 237, 116328 (2020)

    Article  Google Scholar 

  19. U. Alam, A. Khan, W. Raza, A. Khan, D. Bahnemann, M. Muneer, Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catal. Today 284, 169–178 (2017)

    Article  Google Scholar 

  20. E.H.H. Hasabeldaim, O.M. Ntwaeaborwa, R.E. Kroon, E. Coetsee, H.C. Swart, Luminescence properties of Eu doped ZnO PLD thin films: the effect of oxygen partial pressure. Superlattices Microstruct. 139, 106432 (2020)

    Article  Google Scholar 

  21. V. Kumar, H.C. Swart, S. Som, V. Kumar, A. Yousif, A. Pandey, S.K.K. Shaat, O.M. Ntwaeaborwa, The role of growth atmosphere on the structural and optical quality of defect free ZnO films for strong ultraviolet emission. Laser Phys. 24, 105704 (2014)

    Article  ADS  Google Scholar 

  22. V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 101, 57–60 (2013)

    Article  Google Scholar 

  23. K. Kotsis, V. Staemmler, Ab initio calculations of the O1s XPS spectra of ZnO and Zn oxo compounds. Phys. Chem. Chem. Phys. 8, 1490–1498 (2006)

    Article  Google Scholar 

  24. L. Jiang, J. Li, K. Huang, S. Li, Q. Wang, Z. Sun, T. Mei, J. Wang, L. Zhang, N. Wang, X. Wang, Low-Temperature and solution-processable zinc oxide transistors for transparent electronics. ACS Omega 2, 8990–8996 (2017)

    Article  Google Scholar 

  25. A. Hastir, R.L. Opila, N. Kohli, Z. Onuk, B. Yuan, K. Jones, Virpal, R.C. Singh, Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films. J. Mater. Sci. 52, 8502–8517 (2017)

    Article  ADS  Google Scholar 

  26. V. Kumar, S. Som, V. Kumar, V. Kumar, O.M. Ntwaeaborwa, E. Coetsee, H.C. Swart, Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications. Chem. Eng. Sci. 255, 541–552 (2014)

    Article  Google Scholar 

  27. M. Balaguer, C.-Y. Yoo, H.J.M. Bouwmeester, J.M. Serra, Bulk transport and oxygen surface exchange of the mixed ionic–electronic conductor Ce1x TbxO2δ (x = 0.1, 0.2, 0.5). J. Mater. Chem. A 1, 10234–10242 (2013)

    Article  Google Scholar 

  28. Y. Zhao, J.-G. Li, M. Guo, X. Yang, Structural and photoluminescent investigation of LTbH/LEuH nanosheets and their color-tunable colloidal hybrids. J. Mater. Chem. C 1, 3584–3592 (2013)

    Article  Google Scholar 

  29. R. Majitha, J. Speich, K.E. Meissner, Mechanism of generation of ZnO microstructures by microwave-assisted hydrothermal approach. Materials 6, 2497–2507 (2013)

    Article  ADS  Google Scholar 

  30. K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14, 2575–2591 (2004)

    Article  Google Scholar 

  31. M.A. Vergés, A. Mifsud, C.J. Serna, Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J. Chem. Soc. Faraday Trans. 86, 959–963 (1990)

    Article  Google Scholar 

  32. I. Massoudi, T. Ghrib, A.L. Al-Otaibi, K. Al-Hamadah, S. Al-Malky, M. Al-Otaibi, M. Al-Yatimi, Effect of yttrium substitution on microstructural, optical, and photocatalytic properties of ZnO nanostructures. J. Electron. Mater. 49, 5353–5362 (2020)

    Article  Google Scholar 

  33. L. Arda, The effects of Tb doped ZnO nanorod: an EPR study. J. Magn. Magn. Mater. 475, 493–501 (2019)

    Article  ADS  Google Scholar 

  34. A. Srivastava, N. Kumar, K. Prakash Misra, S. Khare, Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant. Electron. Mater. Lett. 10, 703–711 (2014)

    Article  ADS  Google Scholar 

  35. A. Fouzri, N. Ahmed Althumairi, V. Sallet, A. Lusson, Characterization of sol gel Zn1xCaxO thin layers deposited on p-Si substrate by spin-coating method. Opt. Mater. 110, 110519 (2020)

    Article  Google Scholar 

  36. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (WILEY-VCH, Weinheim, 2009)

    Book  Google Scholar 

  37. L.F. Koao, B.F. Dejene, H.C. Swart, S.V. Motloung, T.E. Motaung, S.P. Hlangothi, Effect of Tb3+ ions on the ZnO nanoparticles synthesized by chemical bath deposition method. Adv. Mater. Lett. 7, 529–535 (2016)

    Article  Google Scholar 

  38. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  39. C.-M. Lin, H.-T. Liu, S.-Y. Zhong, C.-H. Hsu, Y.-T. Chiu, M.-F. Tai, J.-Y. Juang, Y.-C. Chuang, Y.-F. Liao, Structural transitions in nanosized Zn0.97Al0.03O powders under high pressure analyzed by in situ angle-dispersive X-ray diffraction. Materials 9, 561 (2016)

    Article  ADS  Google Scholar 

  40. R. Sreeja Sreedharan, R. Reshmi Krishnan, R. Jolly Bose, V.S. Kavitha, S. Suresh, R. Vinodkumar, S.K. Sudheer, V.P. Mahadevan Pillai, Visible luminescence from highly textured Tb3+ doped RF sputtered zinc oxide films. J. Lumin. 184, 273–286 (2017)

    Article  Google Scholar 

  41. R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Devices 2, 51–58 (2017)

    Article  Google Scholar 

  42. C. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 013502 (2009)

    Article  ADS  Google Scholar 

  43. F. Otieno, M. Airo, R.M. Erasmus, D.G. Billing, A. Quandt, D. Wamwangi, Effect of thermal treatment on ZnO:Tb3+ nanocrystalline thin films and application for spectral conversion in inverted organic solar cells. RSC Adv. 8, 29274–29282 (2018)

    Article  ADS  Google Scholar 

  44. R.K. Verma, K. Kumar, S.B. Rai, Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO–Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials. Solid State Sci. 12, 1146–1151 (2010)

    Article  ADS  Google Scholar 

  45. A.D. Sontakke, K. Annapurna, Study on Tb3+ containing high silica and low silica calcium aluminate glasses: Impact of optical basicity. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 94, 180–185 (2012)

    Article  ADS  Google Scholar 

  46. T.-H. Fang, Y.-S. Chang, L.-W. Ji, S.D. Prior, W. Water, K.-J. Chen, C.-F. Fang, C.-N. Fang, S.-T. Shen, Photoluminescence characteristics of ZnO doped with Eu3+ powders. J. Phys. Chem. Solids 70, 1015–1018 (2009)

    Article  ADS  Google Scholar 

  47. M. Zhong, G. Shan, Y. Li, G. Wang, Y. Liu, Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process. Mater. Chem. Phys. 106, 305–309 (2007)

    Article  Google Scholar 

  48. F.S. Richardson, Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem. Rev. 82, 541–552 (1982)

    Article  Google Scholar 

  49. Y.H. Yang, H.G. Zhu, H.M. Dong, G.W. Yang, Growth and luminescence of Tb-doped ZnO nanocones. Mater. Lett. 124, 32–35 (2014)

    Article  Google Scholar 

  50. P.P. Pal, J. Manam, Color tunable ZnO nanorods by Eu3+ and Tb3+ co-doping for optoelectronic applications. Appl. Phys. A 116, 213–223 (2014)

    Article  ADS  Google Scholar 

  51. G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, U. Caldiño, I.V. Kityk, M.A. Mahdi, Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications. Opt. Mater. 72, 380–391 (2017)

    Article  ADS  Google Scholar 

  52. A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A. Dutt, Photoluminescence of ZnO nanowires: a review. Nanomaterials (Basel) 10, 857 (2020)

    Article  Google Scholar 

  53. L. Yang, Z. Wang, Z. Zhang, Y. Sun, M. Gao, J. Yang, Y. Yan, Surface effects on the optical and photocatalytic properties of graphene-like ZnO:Eu3+ nanosheets. J. Appl. Phys. 113, 033514 (2013)

    Article  ADS  Google Scholar 

  54. J. Georges, Lanthanide-sensitized luminescence and applications to the determination of organic analytes. A review. Analyst 118, 1481–1486 (1993)

    Article  ADS  Google Scholar 

  55. S. Sharma, C. Periasamy, A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique. Superlattices Microstruct. 73, 12–21 (2014)

    Article  ADS  Google Scholar 

  56. R.N. Gayen, S.R. Bhattacharyya, Electrical characteristics and rectification performance of wet chemically synthesized vertically aligned n-ZnO nanowire/p-Si heterojunction. J. Phys. D Appl. Phys. 49, 115102 (2016)

    Article  ADS  Google Scholar 

  57. S. Muniza Faraz, W. Shah, N. Ul Hassan Alvi, O. Nur, Q. Ul Wahab, Electrical characterization of Si/ZnO nanorod PN heterojunction diode. Adv. Condens. Matter Phys. 2020, 1 (2020)

    Article  Google Scholar 

  58. S.K. Akay, S. Sarsıcı, H.K. Kaplan, Determination of electrical parameters of ZnO/Si heterojunction device fabricated by RF magnetron sputtering. Opt. Quantum Electron. 50, 362 (2018)

    Article  Google Scholar 

  59. S.O. Tan, İ Taşcıoğlu, S. Altındal Yerişkin, H. Tecimer, F. Yakuphanoğlu, Illumination dependent electrical data identification of the CdZnO Interlayered metal-semiconductor structures. SILICON 12, 2885–2891 (2020)

    Article  Google Scholar 

  60. A. Das, A. Kushwaha, R. Sivasayan, S. Chakraborty, H. Dutta, A. Karmakar, D. Chi, G. Dalapati, S. Chattopadhyay, Temperature-dependent electrical characteristics of CBD/CBD grown n-ZnO nanowire/p-Si heterojunction diodes. J. Phys. D Appl. Phys. 49, 145105 (2016)

    Article  ADS  Google Scholar 

  61. Ş Karataş, N. Yildirim, A. Türüt, Electrical properties and interface state energy distributions of Cr/n-Si Schottky barrier diode. Superlattices Microstruct. 64, 483–494 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors take this opportunity to thank the Department of Physics, College of Science at Al Zulfi, Majmaah University, specifically Dr. Ibrahim Shaarany, for the helpful technical assistance with equipment facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afif Fouzri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Althumairi, N.A., Baig, I., Kayed, T.S. et al. Structural, morphological, optical, and electrical studies of Tb-doped ZnO micropods elaborated by chemical bath deposition on a p-Si substrate. Appl. Phys. A 128, 559 (2022). https://doi.org/10.1007/s00339-022-05701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05701-y

Keywords

  • Tb-doped ZnO micropods
  • Chemical bath deposition
  • XPS analysis
  • Photoluminescence
  • CIE Chromaticity
  • I-V measurement