Skip to main content

The effect of the magnetically dead layer on the magnetization and the magnetic anisotropy of the dextran-coated magnetite nanoparticles

Abstract

We present a study on the magnetic behavior of dextran-coated magnetite nanoparticles (DM NPs) with sizes between 3 and 19 nm, synthesized by hydrothermal-assisted co-precipitation method. The decrease of saturation magnetization (\(\mathrm{M}_{\mathrm{s}}\)) with decreasing particle size has been modeled by assuming the existence of a spin-disordered layer at the particle surface, which is magnetically dead. Based on this core–shell model and taking into account the weight contribution of non-magnetic coating layer (dextran) to the whole magnetization, the dead layer thickness (t) and saturation magnetization \(\mathrm{M}_{\mathrm{s}}\) of the magnetic cores in our samples were estimated to be \(\mathrm{t}=\) 6.8 Å and \(\mathrm{M}_{\mathrm{s}}=\) 98.8 \(\mathrm{emu}/\mathrm{g}\), respectively. The data of \(\mathrm{M}_{\mathrm{s}}\) were analyzed using a law of approach to saturation, indicating an increase in effective magnetic anisotropy (\(\mathrm{K}_{\mathrm{eff}}\)) with decreasing the particle size as expected from the increased surface/volume ratio in small MNPs. The obtained \(\mathrm{K}_{\mathrm{eff}}\) values were successfully modeled by including an extra contribution of dipolar interactions due to the formation of chain-like clusters of MNPs. The surface magnetic anisotropy (\(\mathrm{K}_{\mathrm{s}}\)) was estimated to be about \(\mathrm{K}_{\mathrm{s}}=\) 1.04 \(\times {10}^{5}\mathrm{ J}/{\mathrm{m}}^{3}\). Our method provides a simple and accurate way to obtain the \(\mathrm{M}_{\mathrm{s}}\) core values in surface-disordered MNPs, a relevant parameter required for magnetic modeling in many applications.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14, 21266–21305 (2013)

    Article  Google Scholar 

  2. S.B. Xi, W.J. Lu, H.Y. Wu, P. Tong, Y.P. Sun, Surface spin-glass, large surface anisotropy, and depression of magnetocaloric effect in La0.8Ca0.2MnO.3 nanoparticles. J. Appl. Phys. 112, 123903 (2012)

    ADS  Article  Google Scholar 

  3. F. Reyes-Ortega, Á.V. Delgado, G.R. Iglesias, Modulation of the Magnetic hyperthermia response using different superparamagnetic iron oxide nanoparticle morphologies. Nanomaterials 11, 627 (2021)

    Article  Google Scholar 

  4. M. Soleymani, M. Velashjerdi, Z. Shaterabadi, A. Barati, One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohyd. Polym. 237, 116130 (2020)

    Article  Google Scholar 

  5. M. Asgari, M. Soleymani, T. Miri, A. Barati, Design of thermosensitive polymer-coated magnetic mesoporous silica nanocomposites with a core-shell-shell structure as a magnetic/temperature dual-responsive drug delivery vehicle. Polym. Adv. Technol. 32, 1–9 (2021)

    Article  Google Scholar 

  6. F. Oltolina, A. Peigneux, D. Colangelo, N. Clemente, A. D’Urso, G. Valente, G.R. Iglesias, C. Jiménez-Lopez, M. Prat, Biomimetic magnetite nanoparticles as targeted drug nanocarriers and mediators of hyperthermia in an experimental cancer model. Cancers 12, 2564 (2020)

    Article  Google Scholar 

  7. M. Soleymani, S. Khalighfard, S. Khodayari, H. Khodayari, M.R. Kalhori, M.R. Hadjighassem, Z. Shaterabadi, A.M. Alizadeh, Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci. Rep. 10, 1–14 (2020)

    Article  Google Scholar 

  8. P. Dong, T. Zhang, H. Xiang, X. Xu, Y. Lv, Y. Wang, C. Lu, Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. J. Mater. Chem. B 9, 958–968 (2021)

    Article  Google Scholar 

  9. A.J. Cole, A.E. David, J. Wang, C.J. Galbán, H.L. Hill, V.C. Yang, Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32, 2183–2193 (2011)

    Article  Google Scholar 

  10. Z. Shaterabadi, G. Nabiyouni, M. Soleymani, Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Prog. Biophys. Mol. Biol. 133, 9–19 (2018)

    Article  Google Scholar 

  11. F.C. Fonseca, G.F. Goya, R.F. Jardim, R. Muccillo, N.L.V. Carreno, E. Longo, E.R. Leite, Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B 66, 104406 (2002)

    ADS  Article  Google Scholar 

  12. F. Espinola-Portilla, O. Serrano-Torres, G.F. Hurtado-López, U. Sierra, A. Varenne, F. d’Orlyé, L. Trapiella-Alfonso, S. Gutiérrez-Granados, G. Ramírez-García, Superparamagnetic iron oxide nanoparticles functionalized with a binary alkoxysilane array and poly (4-vinylpyridine) for magnetic targeting and pH-responsive release of doxorubicin. New J. Chem. 45, 3600–3609 (2021)

    Article  Google Scholar 

  13. T. Köhler, A. Feoktystov, O. Petracic, E. Kentzinger, T. Bhatnagar-Schöffmann, M. Feygenson, N. Nandakumaran, J. Landers, H. Wende, A. Cervellino, U. Rücker, Mechanism of magnetization reduction in iron oxide nanoparticles. Nanoscale 13, 6965–6976 (2021)

    Article  Google Scholar 

  14. E. Lima Jr., A.L. Brandl, A.D. Arelaro, G.F. Goya, Spin disorder and magnetic anisotropy in Fe3O4 nanoparticles. J. Appl. Phys. 99, 083908 (2006)

    ADS  Article  Google Scholar 

  15. A. Kale, S. Gubbala, R.D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J. Magn. Magn. Mater. 277, 350–358 (2004)

    ADS  Article  Google Scholar 

  16. S. Asiri, M. Sertkol, H. Güngüneş, M. Amir, A. Manikandan, İ Ercan, A. Baykal, The temperature effect on magnetic properties of NiFe2O4 nanoparticles. J. Inorg. Organomet. Polym Mater. 28, 1587–1597 (2018)

    Article  Google Scholar 

  17. G. Kandasamy, D. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496, 191–218 (2015)

    Article  Google Scholar 

  18. D. Ramimoghadam, S. Bagheri, S.B. Abd-Hamid, Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 368, 207–229 (2014)

    ADS  Article  Google Scholar 

  19. J. Curiale, M. Granada, H.E. Troiani, R.D. Sánchez, A.G. Leyva, P. Levy, K. Samwer, Magnetic dead layer in ferromagnetic manganite nanoparticles. Appl. Phys. Lett. 95, 043106 (2009)

    ADS  Article  Google Scholar 

  20. M. Muroi, R. Street, P.G. McCormick, J. Amighian, Magnetic properties of ultrafine MnFe2O4 powders prepared by mechanochemical processing. Phys. Rev. B 63, 184414 (2001)

    ADS  Article  Google Scholar 

  21. H. Nathani, S. Gubbala, R.D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite: Part I. The effect of surface roughness. Mater. Sci. Eng. B 121, 126–136 (2005)

    Article  Google Scholar 

  22. H. Nathani, S. Gubbala, R.D.K. Misra, Magnetic behavior of nickel ferrite–polyethylene nanocomposites synthesized by mechanical milling process. Mater. Sci. Eng., B 111, 95–100 (2004)

    Article  Google Scholar 

  23. R.H. Kodama, A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321 (1999)

    ADS  Article  Google Scholar 

  24. O. Iglesias, A. Labarta, Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys. Rev. B 63, 184416 (2001)

    ADS  Article  Google Scholar 

  25. B.H. Kim, N. Lee, H. Kim, K. An, Y.I. Park, Y. Choi, K. Shin, Y. Lee, S.G. Kwon, H.B. Na, J.G. Park, Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133, 12624–12631 (2011)

    Article  Google Scholar 

  26. M.A. Gonzalez-Fernandez, T.E. Torres, M. Andrés-Vergés, R. Costo, P. De La Presa, C.J. Serna, M.P. Morales, C. Marquina, M.R. Ibarra, G.F. Goya, Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J. Solid State Chem. 182, 2779–2784 (2009)

    ADS  Article  Google Scholar 

  27. Y. Lv, Y. Yang, J. Fang, H. Zhang, E. Peng, X. Liu, W. Xiao, J. Ding, Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles. RSC Adv. 5, 76764–76771 (2015)

    ADS  Article  Google Scholar 

  28. M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater. 268, 33–39 (2004)

    ADS  Article  Google Scholar 

  29. S. Tong, C.A. Quinto, L. Zhang, P. Mohindra, G. Bao, Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 11, 6808–6816 (2017)

    Article  Google Scholar 

  30. X. Wang, H. Gu, Z. Yang, The heating effect of magnetic fluids in an alternating magnetic field. J. Magn. Magn. Mater. 293, 334–340 (2005)

    ADS  Article  Google Scholar 

  31. Y. Yamamoto, K. Horiuchi, M. Takeuchi, N. Tanaka, R. Aihara, N. Takeuchi, S. Fujita, Size dependence study on magnetic heating properties of superparamagnetic iron oxide nanoparticles suspension. J. Appl. Phys. 116, 123906 (2014)

    ADS  Article  Google Scholar 

  32. S.E. Shirsath, R.H. Kadam, A.S. Gaikwad, A. Ghasemi, A. Morisako, Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J. Magn. Magn. Mater. 323, 3104–3108 (2011)

    ADS  Article  Google Scholar 

  33. T. Kim, M. Shima, Reduced magnetization in magnetic oxide nanoparticles. J. Appl. Phys. 101, 09M516 (2007)

    Article  Google Scholar 

  34. R.C. Hoffmann, M. Kaloumenos, D. Spiehl, E. Erdem, S. Repp, S. Weber, J.J. Schneider, A microwave molecular solution based approach towards high-κ-tantalum (v) oxide nanoparticles: synthesis, dielectric properties and electron paramagnetic resonance spectroscopic studies of their defect chemistry. Phys. Chem. Chem. Phys. 17, 31801–31809 (2015)

    Article  Google Scholar 

  35. R.C. Hoffmann, S. Sanctis, E. Erdem, S. Weber, J.J. Schneider, Zinc diketonates as single source precursors for ZnO nanoparticles: microwave-assisted synthesis, electrophoretic deposition and field-effect transistor device properties. J. Mater. Chem. C 4, 7345–7352 (2016)

    Article  Google Scholar 

  36. S. Repp, E. Harputlu, S. Gurgen, M. Castellano, N. Kremer, N. Pompe, J. Wörner, A. Hoffmann, R. Thomann, F.M. Emen, S. Weber, K. Ocakoglu, E. Erdem, Synergetic effects of Fe3+ doped spinel Li4 Ti5 O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10, 1877–1884 (2018)

    Article  Google Scholar 

  37. A. Bateni, S. Repp, R. Thomann, S. Acar, E. Erdem, M. Somer, Defect structure of ultrafine MgB2 nanoparticles. Appl. Phys. Lett. 105, 202605 (2014)

    ADS  Article  Google Scholar 

  38. E. Öztuna, Ö. Ünal, E. Erdem, H. Yağcı-Acar, U. Ünal, Layer-by-layer grown electrodes composed of cationic Fe3O4 nanoparticles and graphene oxide nanosheets for electrochemical energy storage devices. J. Phys. Chem. C 123, 3393–3401 (2019)

    Article  Google Scholar 

  39. E. Erdem, Electron beam curing of CoFe2O4 nanoparticles. Hybrid Mater. 1, 62–70 (2014)

    Google Scholar 

  40. M. Asgari, M. Soleymani, T. Miri, A. Barati, A robust method for fabrication of monodisperse magnetic mesoporous silica nanoparticles with core-shell structure as anticancer drug carriers. J. Mol. Liq. 292, 111367 (2019)

    Article  Google Scholar 

  41. M. Asgari, M. Soleymani, T. Miri, A. Barati, Design of thermosensitive polymer-coated magnetic mesoporous silica nanocomposites with a core-shell-shell structure as a magnetic/temperature dual-responsive drug delivery vehicle. Polym. Adv. Technol. 32, 4101–4109 (2021)

    Article  Google Scholar 

  42. Z. Shaterabadi, G. Nabiyouni, M. Soleymani, Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Mater. Sci. Eng., C 117, 111274 (2020)

    Article  Google Scholar 

  43. W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)

    ADS  Article  Google Scholar 

  44. W. Lu, M. Ling, M. Jia, P. Huang, C. Li, B. Yan, Facile synthesis and characterization of polyethylenimine-coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 9, 1080–1084 (2014)

    Article  Google Scholar 

  45. F. Liu, P.J. Cao, H.R. Zhang, J.F. Tian, C.W. Xiao, C.M. Shen, J.Q. Li, H.J. Gao, Novel nanopyramid arrays of magnetite. Adv. Mater. 17, 1893–1897 (2005)

    Article  Google Scholar 

  46. Z. Shaterabadi, G. Nabiyouni, M. Soleymani, High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Mater. Sci. Eng., C 75, 947–956 (2017)

    Article  Google Scholar 

  47. Z. Shaterabadi, G. Nabiyouni, M. Soleymani, Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia. Physica C: Supercond. Appl. 549, 84–87 (2018)

    ADS  Article  Google Scholar 

  48. A. Kotoulas, C. Dendrinou-Samara, M. Angelakeris, O. Kalogirou, The effect of polyol composition on the structural and magnetic properties of magnetite nanoparticles for magnetic particle hyperthermia. Materials 12, 2663 (2019)

    ADS  Article  Google Scholar 

  49. J. Mürbe, A. Rechtenbach, J. Töpfer, Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater. Chem. Phys. 110, 426–433 (2008)

    Article  Google Scholar 

  50. G. Gnanaprakash, J. Philip, T. Jayakumar, B. Raj, Effect of digestion time and alkali addition rate on physical properties of magnetite nanoparticles. J. Phys. Chem. B 111, 7978–7986 (2007)

    Article  Google Scholar 

  51. B.D. Cullity, C.D. Graham, Introduction to magnetic materials (Wiley, 2011)

    Google Scholar 

  52. S.H. Chaki, T.J. Malek, M.D. Chaudhary, J.P. Tailor, M.P. Deshpande, Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 035009 (2015)

    ADS  Article  Google Scholar 

  53. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288 (1996)

    ADS  Article  Google Scholar 

  54. M. Zheng, X.C. Wu, B.S. Zou, Y.J. Wang, Magnetic properties of nanosized MnFe2O4 particles. J. Magn. Magn. Mater. 183, 152–156 (1998)

    ADS  Article  Google Scholar 

  55. C. Liu, Z.J. Zhang, Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater. 13, 2092–2096 (2001)

    Article  Google Scholar 

  56. M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L.M. Martinez, J.S. Munoz, M. Mikhov, Magnetic properties and Mössbauer spectra of nanosized CoFe2O4 powders. J. Magn. Magn. Mater. 183, 163–172 (1998)

    ADS  Article  Google Scholar 

  57. J.Z. Jiang, G.F. Goya, H.R. Rechenberg, Magnetic properties of nanostructured CuFe2O4. J. Phys.: Condens. Matter 11, 4063 (1999)

    ADS  Google Scholar 

  58. D. Caruntu, G. Caruntu, C.J. O’Connor, Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D Appl. Phys. 40, 5801 (2007)

    ADS  Article  Google Scholar 

  59. W.F. Brown Jr., Theory of the approach to magnetic saturation. Phys. Rev. 58, 736 (1940)

    ADS  MATH  Article  Google Scholar 

  60. C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estradé, F. Peiró, Z. Saghi, Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1–8 (2013)

    Article  Google Scholar 

  61. Z.Q. Jin, W. Tang, J.R. Zhang, H.X. Qin, Y.W. Du, Effective magnetic anisotropy of nanocrystalline Nd–Fe–Ti–N hard magnetic alloys. Eur. Phys. J. B Cond. Matter Complex Syst. 3, 41–44 (1998)

    Article  Google Scholar 

  62. S.V. Andreev, M.I. Bartashevich, V.I. Pushkarsky, V.N. Maltsev, L.A. Pamyatnykh, E.N. Tarasov, N.V. Kudrevatykh, T. Goto, Law of approach to saturation in highly anisotropic ferromagnets application to Nd–Fe–B melt-spun ribbons. J. Alloy. Compd. 260, 196–200 (1997)

    Article  Google Scholar 

  63. D. Sarkar, M. Mandal, Static and dynamic magnetic characterization of DNA-templated chain-like magnetite nanoparticles. J. Phys. Chem. C 116, 3227–3234 (2012)

    Article  Google Scholar 

  64. U.M. Engelmann, J. Seifert, B. Mues, S. Roitsch, C. Ménager, A.M. Schmidt, I. Slabu, Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels. J. Magn. Magn. Mater. 471, 486–494 (2019)

    ADS  Article  Google Scholar 

  65. J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011)

    ADS  Article  Google Scholar 

  66. C.L. Dennis, R. Ivkov, Physics of heat generation using magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 29, 715–729 (2013)

    Article  Google Scholar 

  67. G.F. Goya, M.P. Morales, Field dependence of blocking temperature in magnetite nanoparticles. J. Metastable Nanocryst. Mater. 20, 673–678 (2004)

    Google Scholar 

  68. D. Kechrakos, K.N. Trohidou, Competition between dipolar and exchange interparticle interactions in magnetic nanoparticle films. J. Magn. Magn. Mater. 262, 107–110 (2003)

    ADS  Article  Google Scholar 

  69. M. Pauly, B.P. Pichon, P. Panissod, S. Fleutot, P. Rodriguez, M. Drillon, S. Begin-Colin, Size dependent dipolar interactions in iron oxide nanoparticle monolayer and multilayer Langmuir–Blodgett films. J. Mater. Chem. 22, 6343–6350 (2012)

    Article  Google Scholar 

  70. F. Bødker, S. Mørup, S. Linderoth, Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282 (1994)

    ADS  Article  Google Scholar 

  71. J. Bartolomé, L.M. García, F. Bartolomé, F. Luis, R. López-Ruiz, F. Petroff, C. Deranlot, F. Wilhelm, A. Rogalev, P. Bencok, N.B. Brookes, Magnetic polarization of noble metals by Co nanoparticles in M-capped granular multilayers (M = Cu, Ag, and Au): an X-ray magnetic circular dichroism study. Phys. Rev. B 77, 184420 (2008)

    ADS  Article  Google Scholar 

  72. F. Luis, J.M. Torres, L.M. García, J. Bartolomé, J. Stankiewicz, F. Petroff, F. Fettar, J.L. Maurice, A. Vaures, Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of interparticle interactions. Phys. Rev. B 65, 094409 (2002)

    ADS  Article  Google Scholar 

  73. M.I. Gorenstein, W. Greiner, Linear chains of dipoles and magnetic susceptibility. Mod. Phys. Lett. B 28, 1450039 (2014)

    ADS  Article  Google Scholar 

  74. M. Anand, Hysteresis in a linear chain of magnetic nanoparticles. J. Appl. Phys. 128, 023903 (2020)

    ADS  Article  Google Scholar 

  75. K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2, 88–91 (2003)

    ADS  Article  Google Scholar 

  76. I. Morales, R. Costo, N. Mille, G.B. Da Silva, J. Carrey, A. Hernando, P. De la Presa, High frequency hysteresis losses on γ-Fe2O3 and Fe3O4: susceptibility as a magnetic stamp for chain formation. Nanomaterials 8, 970 (2018)

    Article  Google Scholar 

  77. E. Myrovali, N. Maniotis, A. Makridis, A. Terzopoulou, V. Ntomprougkidis, K. Simeonidis, D. Sakellari, O. Kalogirou, T. Samaras, R. Salikhov, M. Spasova, Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Sci. Rep. 6, 1–11 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Arak University Research Council (AURC) and Iran National Science Foundation (INSF). The authors acknowledge AURC and INSF for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Nabiyouni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaterabadi, Z., Nabiyouni, G., Goya, G.F. et al. The effect of the magnetically dead layer on the magnetization and the magnetic anisotropy of the dextran-coated magnetite nanoparticles. Appl. Phys. A 128, 631 (2022). https://doi.org/10.1007/s00339-022-05675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05675-x

Keywords

  • Effective magnetic anisotropy
  • Dipolar interactions
  • Magnetic dead layer
  • Core–shell model
  • Spin disorder
  • Surface magnetic anisotropy
  • Dextran-coated magnetite NPs