Skip to main content
Log in

Hexa-sectored square photonic crystal fiber for blood serum and plasma sensing with ultralow confinement loss

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study suggested a novel hexa-sectored square photonic crystal fiber (HS-SPCF) for blood serum and blood plasma sensing. The proposed HS-SPCF depicts an eminent sensitivity of blood plasma 66.7% and blood serum73.4% with ultralow low confinement loss 1.55 × 10–12 and 10.55 × 10–12 at the wavelength of 1.33 µm for blood plasma and serum. The operating wavelength to measure the optical properties using FEM was 0.6–1.6 µm. The proposed HS-SPCF showed ameliorating performance in confinement loss and relative sensitivity than the previous structures for blood components sensing. In addition, other optical characteristics like high birefringence of 2.6 × 10–3 and 2.6 × 10–3, lower EML of 0.21247 (cm−1) and 0.2170 (cm−1), effective area of 6.1 µm2 and 6.4 µm2, nonlinearity of 21.1(W−1 km−1) and 19.6 (W−1 km−1), numerical aperture (NA) of 0.286 and 0.281 has been achieved for proposed PCF at the wavelength of 1.33 µm. The proposed PCF will be used for biosensing or blood-sensing purposes and a broad diversity of chemical sensing functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.C. Knight, T.A. Birks, P. St, J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)

    Article  ADS  Google Scholar 

  2. J.C. Knight, P. St, J. Russell, New ways to guide light. Science 296(5566), 276–277 (2002)

    Article  Google Scholar 

  3. T.-W. Lu, P.-T. Lee, Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express 17(3), 1518–1526 (2009)

    Article  ADS  Google Scholar 

  4. Y.-H. Chang, Y.-Y. Jhu, Wu. Chien-Jang, Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 285(6), 1501–1504 (2012)

    Article  ADS  Google Scholar 

  5. W.-C. Lai, S. Chakravarty, Yi. Zou, R.T. Chen, Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy. Opt. Lett. 38(19), 3799–3802 (2013)

    Article  ADS  Google Scholar 

  6. E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48(11), 1403–1410 (2012)

    Article  ADS  Google Scholar 

  7. P. Hu, X. Dong, W.C. Wong, L.H. Chen, K. Ni, C.C. Chan, Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating. Appl. Opt. 54(10), 2647–2652 (2015)

    Article  ADS  Google Scholar 

  8. C.-Y. Li, B.-B. Song, Wu. Ji-xuan, W. Huang, Wu. Xu-jie, C. Jin, Dual-demodulation large-scope high-sensitivity refractive index sensor based on twin-core PCF. Optoelectron. Lett. 17(4), 193–198 (2021)

    Article  ADS  Google Scholar 

  9. S. Asaduzzaman, K. Ahmed, B. K. Paul, Slotted-core photonic crystal fiber in gas-sensing application. In Advanced Sensor Systems and Applications VII, vol 10025 (International Society for Optics and Photonics, 2016), p. 100250O

  10. Md.S. Islam, B.K. Paul, K. Ahmed, S. Asaduzzaman, Rhombic core photonic crystal fiber for sensing applications: modeling and analysis. Optik 157, 1357–1365 (2018)

    Article  ADS  Google Scholar 

  11. Md.I. Islam, M. Khatun, S. Sen, K. Ahmed, S. Asaduzzaman. Spiral photonic crystal fiber for gas sensing application. In 2016 9th International Conference on Electrical and Computer Engineering (ICECE), pp. 238–242. IEEE (2016)

  12. B.K. Paul, Md.S. Islam, K. Ahmed, S. Asaduzzaman, Alcohol sensing over O+ E+ S+ C+ L+ U transmission band based on porous cored octagonal photonic crystal fiber. Photonic Sensors 7(2), 123–130 (2017)

    Article  ADS  Google Scholar 

  13. C. Zhang, Q.W. Song, C.Y. Ku, R.B. Gross, R.R. Birge, Determination of the refractive index of a bacteriorhodopsin film. Opt. Lett. 19(18), 1409–1411 (1994)

    Article  ADS  Google Scholar 

  14. A. Brunsting, P.F. Mullaney, Differential light scattering from spherical mammalian cells. Biophys. J. 14(6), 439–453 (1974)

    Article  Google Scholar 

  15. C.G. Rylander, O.F. Stumpp, T.E. Milner, N.J. Kemp, J.M. Mendenhall, K.R. Diller, A.J. Welch, Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt. 11(4), 041117 (2006)

    Article  ADS  Google Scholar 

  16. J.N. Adkins, S.M. Varnum, K.J. Auberry, R.J. Moore, N.H. Angell, R.D. Smith, D.L. Springer, J.G. Pounds, Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics 1(12), 947–955 (2002)

    Article  Google Scholar 

  17. H. Li, L. Lin, S. Xie. Refractive index of human whole blood with different types in the visible and near-infrared ranges. In Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, vol 3914. (International Society for Optics and Photonics, 2000), pp. 517–521

  18. O.S. Zhernovaya, V.V. Tuchin, I.V. Meglinski, Monitoring of blood proteins glycation by refractive index and spectral measurements. Laser Phys. Lett. 5(6), 460 (2008)

    Article  ADS  Google Scholar 

  19. M.I. Islam, K. Ahmed, S. Sen, B.K. Paul, M.S. Islam, S. Chowdhury, A.N. Bahar, Proposed square lattice photonic crystal fiber for extremely high nonlinearity, birefringence and ultra-high negative dispersion compensation. J. Opt. Commun. 40(4), 401–410 (2019)

    Article  Google Scholar 

  20. S. Asaduzzaman, K. Ahmed, Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)

    Article  Google Scholar 

  21. S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang et al., Measurement of the refractive index of whole blood and its components for a continuous spectral region. J Biomed. Opt. 24(3), 035003 (2019)

    Google Scholar 

  22. H. Ding, J.Q. Lu, W.A. Wooden, P.J. Kragel, Hu. Xin-Hua, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys. Med. Biol. 51(6), 1479 (2006)

    Article  Google Scholar 

  23. K. Ahmed, F. Ahmed, S. Roy, B.K. Paul, M.N. Aktar, D. Vigneswaran, M.S. Islam, Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens. J. 19(9), 3368–3375 (2019)

    Article  ADS  Google Scholar 

  24. M.M.A. Eid, M.A. Habib, M.S. Anower, A.N.Z. Rashed, Hollow core photonic crystal fiber (PCF)–based optical sensor for blood component detection in terahertz spectrum. Braz. J. Phys. 51(4), 1017–1025 (2021)

    Article  ADS  Google Scholar 

  25. P. Sharma, P. Sharan, Design of photonic crystal based ring resonator for detection of different blood constituents. Opt. Commun. 348, 19–23 (2015)

    Article  ADS  Google Scholar 

  26. S. Singh, V. Kaur. Photonic crystal fiber sensor based on sensing ring for different blood components: design and analysis. In 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 399–403. IEEE, 2017.

  27. V. Kaur, S. Singh, Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection. J. Nanophotonics 13(2), 026011 (2019)

    Article  ADS  Google Scholar 

  28. H. Chen, D. Chen, Z. Hong, Squeezed lattice elliptical-hole terahertz fiber with high birefringence. Appl. Opt. 48(20), 3943–3947 (2009)

    Article  ADS  Google Scholar 

  29. S. Wang, Z. Li, Yu. Chunlei, M. Wang, S. Feng, Q. Zhou, D. Chen, Hu. Lili, Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method. Opt. Mater. 35(9), 1752–1755 (2013)

    Article  ADS  Google Scholar 

  30. G. Palma-Vega, C. Hupel, J. Nold, S. Kuhn, J. Limpert, N. Haarlammert, and T. Schreiber. Simplified manufacturing of advanced microstructured fibers for laser applications. Fiber Lasers XVIII: Technology and Systems, vol 11665. (International Society for Optics and Photonics, 2021), p. 116651S

  31. M.K. Annika, Enejder, Johannes Swartling, Prakasa Aruna, Stefan Andersson Engels, Influence of cell shape and aggregate formation on the optical properties of flowing whole blood. Appl. Opt. 42(7), 1384–1394 (2003)

    Article  Google Scholar 

  32. M. Friebel, M.C. Meinke, Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements. J. Biomed. Opt. 10(6), 064019 (2005)

    Article  ADS  Google Scholar 

  33. S.M.B.A. Riyadh, M.M. Hossain, H.S. Mondal, M.E. Rahaman, P.K. Mondal, "Photonic crystal fibers for sensing applications. J. Biosens. Bioelectron. 9, 251 (2012)

    Google Scholar 

  34. R.T. Bise, D.J. Trevor, Sol-gel derived microstructured fiber: Fabrication and characterization, in Optical Fiber Communication Conference (Optical Society of America, 2005), p. OWL6

  35. A. Ghazanfari, W. Li, M.C. Leu, G.E. Hilmas, A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Additive Manuf. 15, 102–112 (2017)

    Article  Google Scholar 

  36. Y. Wang, G. Jiang, Z. Yu, Q. Wang, X. Jiang, Trapezium-shaped groove photonic crystal fiber plasmon sensor for low refractive index detection. Sens. Bio-Sens. Res. 34, 100452 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

All the authors approved for submission as well as no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaduzzaman, S., Rehana, H., Chakma, R. et al. Hexa-sectored square photonic crystal fiber for blood serum and plasma sensing with ultralow confinement loss. Appl. Phys. A 128, 467 (2022). https://doi.org/10.1007/s00339-022-05621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05621-x

Keywords

Navigation