Skip to main content
Log in

The significant role of WO3 on high-dense BaO–P2O3 glasses: transmission factors and a comparative investigation using commercial and other types of shields

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The direct effects of tungsten trioxide (WO3) on gamma radiation attenuation properties of tungsten/barium/phosphate glasses with chemical form xWO3–(50-x/2)BaO–(50-x/2)P2O3, x = 0 (S1)–60 (S7) in steps of 10 mol% has been investigated. To this end, Phy-X/PSD software and Monte Carlo code were applied. The increased amount of WO3 in the glass composition, on the other hand, contributed positively to the increase in density and radiation sensing properties. At the lowest and highest WO3 contributions, a nearly twofold increase in HVL value was seen for the S1 and S7 glass samples, respectively, with S7 having the lowest HVL values. The HVL has obeyed the trend as: (HVL)S1 > (HVL)S2 > (HVL)S3 > (HVL)S4 > (HVL)S5 > (HVL)S6 > (HVL)S7. The variation of the tenth value layer (TVL) for all studied glasses has the same trend of HVL. In terms of mean free path (MFP), there was negative effect of WO3 concentration on the trend of MFP. Consequently, S7 glass sample has the lowest values of MFP, while the S1 glass sample has the highest values. Therefore, (MFP)S1 > (MFP)S2 > (MFP)S3 > (MFP)S4 > (MFP)S5 > (MFP)S6 > (MFP)S7. A comparison of the HVL of S7 glass sample with some commercial radiation shielding materials such as different types of concrete and RS-253-G18 glasses has been performed and concluded that the S7 glass sample is superior as radiation shielding material than several commercial materials. It can be concluded that WO3 reinforcement serves a multipurpose of increasing the density and hence the gamma-ray-shielding characteristics of comparable glass compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. N. Singh, K.J. Singh, K. Singh, H. Singh, Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 225, 305–309 (2004)

    Article  ADS  Google Scholar 

  2. E. Kavaz, F.I. El Agawany, H.O. Tekin, U. Perişanoğlu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics. J. Phys. Chem. Solids 142, 109437 (2020)

    Article  Google Scholar 

  3. A. Chahine, M. Et-tabirou, J.L. Pascal, FTIR and Raman spectra of the Na2O–CuO–Bi2O3–P2O5 glasses. Mater. Lett. 58, 2776–2780 (2004)

    Article  Google Scholar 

  4. A. El-Taher, A.M. Ali, Y.B. Saddeek, R. Elsaman, H. Algarni, Kh.S. Shaaban, T. Amer, Gamma ray shielding and structural properties of iron alkali alumino-phosphate glasses modified by PbO. Radiat. Phys. Chem. 165, 108403 (2019)

    Article  Google Scholar 

  5. S.A.M. Issa, M.I. Sayyed, A.M.A. Mostafa, G. Lakshminarayana, I.V. Kityk, Investigation of mechanical and radiation shielding features of heavy metal oxide based phosphate glasses for gamma radiation attenuation applications. J. Mater. Sci. Mater. Electron. 30, 12140–12151 (2019)

    Article  Google Scholar 

  6. E.-S. Waly, G.S. Al-Qous, M.A. Bourham, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 150, 120–124 (2018)

    Article  ADS  Google Scholar 

  7. R.G. Jaeger, Engineering compendiumon radiation shielding, volume II: shielding materials (Springer-Verlag, International Atomic Energy Agency, Vienna, 1975)

    Book  Google Scholar 

  8. N. Singh, K.J. Singh, K. Singh, H. Singh, Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Radiat. Meas. 41, 84–88 (2006)

    Article  Google Scholar 

  9. M. Saad, H. Elhouichet, Good optical performances of Eu3+/Dy3+/Ag nanoparticles co-doped phosphate glasses induced by plasmonic effects. J. Alloys Compd. 806, 1403–1409 (2019)

    Article  Google Scholar 

  10. G. Moulika, S. Sailaja, B.N.K. Reddy, V.S. Reddy, S. Dhoble, B.S. Reddy, Optical properties of Eu3+ and Tb3+ ions doped alkali oxide (Li2O/Na2O/K2O) modified boro phosphate glasses for red, green lasers and display device applications. Physica B 535, 2–7 (2018)

    Article  ADS  Google Scholar 

  11. M.K. Hwang, I.G. Kim, B.K. Ryu, Study of water resistance of Fe 2 O 3 doped P 2 O 5–ZnO–Bi 2 O 3 sealing glass system, Korean. J Met. Mater. 54, 621–625 (2016)

    Article  Google Scholar 

  12. J. Šantić, L. Nikolić, R.D. Pavić, P. Banhatti, L. Mošner, A. Koudelka, Moguš- Milanković, scaling features of conductivity spectra reveal complexities in ionic, polaronic and mixed ionic-polaronic conduction in phosphate glasses. Acta Mater. 175, 46–54 (2019)

    Article  ADS  Google Scholar 

  13. Y.B. Peng, D.E. Day, High thermal expansion phosphate glasses part 2. Glass Technol. 32, 166 (1991)

    Google Scholar 

  14. D.S. Brauer, C. Rüssel, J. Kraft, Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: experimental and modeling using artificial neural networks. J. Non-Cryst. Solids 353, 263 (2007)

    Article  ADS  Google Scholar 

  15. V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 98, 14–21 (2014)

    Article  ADS  Google Scholar 

  16. L. Koudelka, J. Šubčík, P. Mošner, I. Gregora, L. Montagne, L. Delevoye, I. Gregora, Glass-forming ability and structure of glasses in ZnO-WO3-P2O5 system. Phys Chem Glasses Eur J Glass Sci Technol B 53, 79–85 (2012)

    Google Scholar 

  17. L. Koudelka, I. Rösslerová, P. Mošner, Z. Černošek, M. Lissová, M. Liška, L. Montagne, L. Delevoye, Structure and properties of lead tungstate-phosphate glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 53, 86–92 (2012)

    Google Scholar 

  18. G. Pal Singh, D.P. Singh, Effect of WO3 on structural and optical properties of CeO2–PbO–B2O3 glasses. Phys. B Condens. Matter 406, 640–644 (2011)

    Article  ADS  Google Scholar 

  19. Y. Saito, S. Uchida, T. Kubo, H. Segawa, Energy-storable dye-sensitized solar cells with tungsten oxide charge-storage electrode. J. Electrochem. Soc. 16, 27 (2009)

    Google Scholar 

  20. F.G.K. Baucke, K. Bange, T. Gambke, Reflecting electrochromic devices. Displays 9, 179 (1988)

    Article  Google Scholar 

  21. C.G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindström, G.A. Niklasson, C.-G. Ribbing, D. Rönnow, M. Strømme Mattsson, M. Veszelei, Towards the smart window: progress in electrochromics. J. Non-Cryst. Solids 218, 273 (1997)

    Article  ADS  Google Scholar 

  22. S.A.M. Issa, M. Rashad, A. Hanafy Taha, B. Saddeek Yasser, Experimental investigations on elastic and radiation shielding parameters of WO3-B2O3-TeO2 glasses. J. Non-Cryst. Solids 544, 120207 (2020)

    Article  Google Scholar 

  23. R. El-Mallawany, L. El-Deen, M. Elkholy, Dielectric properties and polarizability of molybdenum tellurite glasses. J. Mater. Sci. 31, 633943 (1996)

    Article  Google Scholar 

  24. H. Qiu, M. Kudo, H. Sakata, Synthesis and electrical properties of Fe2O3-MoO3-TeO2 glasses. Mater. Chem. Phys. 51, 233e8 (1997)

    Article  Google Scholar 

  25. J. Pisarska, R. Lisiecki, W. Ryba-Romanowski, G. Domniak-Dzik, W.A. Pisarski, Up-converted luminescence in YbeTm codoped lead fluoroborate glasses. J. Alloys Compd. 451, 226e8 (2008)

    Google Scholar 

  26. G.P. Singh, P. Kaur, S. Kaur, D.P. Singh, Role of WO3 in structural and optical properties of WO3eAl2O3ePbOeB2O3 glasses. Physica B406, 4652e6 (2011)

    Google Scholar 

  27. B.H. Jung, D.K. Kim, H.-S. Kim, Properties and structure of (50–x) BaO-xZnO-50P2O5. J. Non-Cryst. Solids 351, 3356–3360 (2005)

    Article  ADS  Google Scholar 

  28. A. Saeed, R.M. Elshazly, Y.H. Elbasher, A.M. Abou El-azm, M.M. El-Okr, M.N.H. Comsan, A.M. Osman, A.M. Abdal-monem, A.R. El-Sersy, Gamma ray attenuation in a developed borate glassy system. Radiat. Phys. Chem. 102, 167–170 (2014)

    Article  ADS  Google Scholar 

  29. RSICC Computer Code Collection (2002) MCNPX user’s manual version 2.4.0. Monte Carlo N-particle transport code system for multiple and high energy applications

  30. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  Google Scholar 

  31. P. Kalenda, L. Koudelka, P. Mošner, L. Montagne, B. Revel, Glass-forming ability and the structure of glasses in the BaO-WO3-P2O5 system. J. Non-Cryst. Solids 541, 120145 (2020)

    Article  Google Scholar 

  32. M.I. Sayyed, B.O. Ashok Kumar, K.A. El-bashir, M.H.M. Mahmoud, H.A.A. Sidek. Zaid, K.A. Matori, Investigation of the mechanical and radiation shielding features for BaO-WO3-P2O5 glass systems. Optik 258, 168810 (2022). https://doi.org/10.1016/j.ijleo.2022.168810

    Article  ADS  Google Scholar 

  33. M. Almateri, O. Agar, E.E. Altunsoy, O. Kilicoglu, M.I. Sayyed, H.O. Tekin, Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies. Res. Phys. 12, 2123–2128 (2019). https://doi.org/10.1016/j.rinp.2019.01.094

    Article  Google Scholar 

  34. H.O. Tekin, G. ALMisned, Y.S. Rammah, G. Susoy, F.T. Ali, D.S. Baykal, H.M.H. Zakaly, S.A.M. Issa, A. Ene, Mechanical properties, elastic moduli, transmission factors, and gamma-ray-shielding performances of Bi2O3–P2O5–B2O3–V2O5 quaternary glass system. Open Chem. 20, 314–329 (2022). https://doi.org/10.1515/chem-2022-0145

    Article  Google Scholar 

  35. H.O. Tekin, G. Almisned, G. Susoy, F.T. Ali, D.S. Baykal, A. Ene, S.A.M. Issa, Y.S. Rammah, H.M.H. Zakaly, Transmission factor (TF) behavior of Bi2O3–TeO2–Na2O–TiO2–ZnO glass system: a Monte Carlo simulation study. Sustainability 14, 2893 (2022). https://doi.org/10.3390/su14052893

    Article  Google Scholar 

  36. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  Google Scholar 

  37. http://www.schott.com/advanced_optics/english/products/optical-materials/special-materials/radiation-shielding-glasses/index.html〉, n.d.

Download references

Acknowledgements

This work was performed under Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia. The authors express their sincere gratitude to Princess Nourah Bint Abdulrahman University.

Funding

Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. O. Tekin or Ghada ALMisned.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Institutional review board

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, H.O., ALMisned, G., Rammah, Y.S. et al. The significant role of WO3 on high-dense BaO–P2O3 glasses: transmission factors and a comparative investigation using commercial and other types of shields. Appl. Phys. A 128, 470 (2022). https://doi.org/10.1007/s00339-022-05620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05620-y

Keywords

Navigation