Skip to main content
Log in

Physicochemical investigation of pure cadmium hydroxide Cd(OH)2 and Cd(OH)2–CdO composite material deposited by pneumatic spray pyrolysis technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper investigates the physicochemical properties of pure Cd(OH)2 and Cd(OH)2–CdO composite materials in depth. The cadmium sulfate octahydrate (3CdSO4.8H2O) is used as a precursor for the first time in this work and never been used in previous works involving cadmium-based materials. Additionally, we present the first synthesis of Cd(OH)2–CdO by pneumatic spray pyrolysis deposition technique. Five cadmium hydroxide–oxide films are coated by spray pyrolysis on glass substrates by varying the solution concentration (0.025 M, 0.05 M, 0.1 M, 0.2 M, and 0.3 M). According to the structural characterization, the molarity has a clear impact on the formation of pure Cd(OH)2 or Cd(OH)2–CdO phase mixture. The UV–Vis spectrophotometry reveals the high film transparency of ~ 90% in the visible region. The calculated optical bandgap of Cd(OH)2 and CdO for the various films corresponds well to the literature. The FTIR analysis reveals the characteristic bands of Cd–O and the presence of –OH groups as the main signature of Cd(OH)2. The elemental composition investigated by means of EDS confirms the presence of Cd and O. The photoluminescence characterization reveals the various electronic transitions within CdO, considered as an activator within the Cd(OH)2 host matrix. For the lowest molarities, SEM micrographs reveal a distinct porous structure. The electrical measurements revealed that the films’ resistivity varies in the range (3–5.5) Ω.cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Sasirekha, S. Arumugam, Electrochemical performance of zinchydroxide Zn(OH)2 nanosheet for supercapacitor application. AIP Conf. Proc. 1832, 1–4 (2017). https://doi.org/10.1063/1.4980280

    Article  Google Scholar 

  2. Y. Wu et al., Hydrogen production from methanol aqueous solution by ZnO/Zn(OH)2 macrostructure photocatalysts. RSC Adv. 8(21), 11395–11402 (2018). https://doi.org/10.1039/c8ra00943k

    Article  ADS  Google Scholar 

  3. S.R. Ede, S. Anantharaj, K.T. Kumaran, S. Mishra, S. Kundu, One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv. 7(10), 5898–5911 (2017). https://doi.org/10.1039/c6ra26584g

    Article  ADS  Google Scholar 

  4. S.A. Mozaffari, S.H. Mahmoudi Najafi, Z. Norouzi, Hierarchical NiO@Ni(OH)2 nanoarrays as high-performance supercapacitor electrode material. Electrochiz. Acta 368, 137633 (2021). https://doi.org/10.1016/j.electacta.2020.137633

    Article  Google Scholar 

  5. X. Cai et al., Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods composites for azo dyes under visible-light irradiation. Ceram. Int. 40(1 PART A), 57–65 (2014). https://doi.org/10.1016/j.ceramint.2013.05.103

    Article  Google Scholar 

  6. F. Zhang et al., Highly dispersed and small-sized nickel(II) hydroxide co-catalyst prepared by photodeposition for hydrogen production. Chem. Asian J. 14(23), 4193–4200 (2019). https://doi.org/10.1002/asia.201901217

    Article  Google Scholar 

  7. C. Su, M. Qiu, Y. An, S. Sun, C. Zhao, W. Mai, Controllable fabrication of α-Ni(OH)2 thin films with preheating treatment for long-term stable electrochromic and energy storage applications. J. Mater. Chem. C 8(9), 3010–3016 (2020). https://doi.org/10.1039/c9tc06354d

    Article  Google Scholar 

  8. Y.J. Yang, W. Li, X. Chen, Highly enhanced electrocatalytic oxidation of glucose on Cu (OH) 2/CuO nanotube arrays modified copper electrode. J. Solid State Electrochem. 16(9), 2877–2881 (2012). https://doi.org/10.1007/s10008-012-1718-3

    Article  Google Scholar 

  9. W. Deng, M. Long, X. Miao, N. Wen, W. Deng, Eco-friendly preparation of robust superhydrophobic Cu(OH)2 coating for self-cleaning, oil-water separation and oil sorption. Surf. Coatings Technol. 325, 14–21 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.040

    Article  Google Scholar 

  10. M. Barjasteh-Moghaddam, A. Habibi-Yangjeh, Preparation of Cd(OH) 2 nanostructures in water using a simple refluxing method and their photocatalytic activity. J. Iran. Chem. Soc. (2012). https://doi.org/10.1007/s13738-011-0034-7

    Article  Google Scholar 

  11. B.M. Pirzada, O. Mehraj, N.A. Mir, M.Z. Khan, S. Sabir, Efficient visible light photocatalytic activity and enhanced stability of BiOBr/Cd(OH)2 heterostructures. New J. Chem. 39(9), 7153–7163 (2015). https://doi.org/10.1039/c5nj00839e

    Article  Google Scholar 

  12. S. Yokoyama, H. Takahashi, Y. Sato, B. Jeyadevan, K. Tohji, Effect of crystalline structure of Cd(OH)2 precursor on the photocatalytic activity of stratified CdS. AIP Conf. Proc. 898, 179–181 (2007). https://doi.org/10.1063/1.2721275

    Article  ADS  Google Scholar 

  13. J. Li, Y. Ni, J. Liu, J. Hong, Preparation, conversion, and comparison of the photocatalytic property of Cd(OH)2, CdO, CdS and CdSe. J. Phys. Chem. Solids 9(70), 1285–1289 (2009). https://doi.org/10.1016/J.JPCS.2009.07.014

    Article  ADS  Google Scholar 

  14. A.C. Nwanya, C. Chigbo, S.C. Ezugwu, R.U. Osuji, M. Malik, F.I. Ezema, Transformation of cadmium hydroxide to cadmium oxide thin films synthesized by SILAR deposition process: Role of varying deposition cycles. J. Assoc. Arab Univ. Basic Appl. Sci. 20, 49–54 (2016). https://doi.org/10.1016/J.JAUBAS.2014.09.001

    Article  Google Scholar 

  15. L.A. Saghatforoush, R. Mehdizadeh, S. Sanati, M. Hasanzadeh, Aqueous solution synthesis of plate-like Cd(OH)2 nanostructures and their conversion to CdO nanoparticles. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 42(9), 1285–1290 (2012). https://doi.org/10.1080/15533174.2012.680165

    Article  Google Scholar 

  16. M. Khairy, H.A. Ayoub, C.E. Banks, Large-scale production of CdO/Cd(OH)2 nanocomposites for non-enzyme sensing and supercapacitor applications. RSC Adv. 8(2), 921–930 (2018). https://doi.org/10.1039/c7ra09457d

    Article  ADS  Google Scholar 

  17. T. Takahashi, O. Yamada, Crystallographic and magnetic properties of the Cd(OH)2 layer structure compound TiS2 containing extra iron. J. Solid State Chem. 7(1), 25–30 (1973). https://doi.org/10.1016/0022-4596(73)90116-3

    Article  ADS  Google Scholar 

  18. J. Adnan et al., Synthesis of cadmium hydroxide nanostructure via composite-hydroxide-mediated approach. Nanomater. Nanotechnol (2019). https://doi.org/10.1177/1847980419852551

    Article  Google Scholar 

  19. B. Tang, L. Zhuo, J. Ge, J. Niu, Z. Shi, Hydrothermal synthesis of ultralong and single-crystalline Cd(OH) 2 nanowires using alkali salts as mineralizers. Inorg. Chem. 44(8), 2568–2569 (2005). https://doi.org/10.1021/ic049195s

    Article  Google Scholar 

  20. J.-J. Miao, R.-L. Fu, J.-M. Zhu, K. Xu, J.-J. Zhu, H.-Y. Chen, Fabrication of Cd(OH)2 nanorings by ultrasonic chiselling on Cd(OH)2 nanoplates. Chem. Commun. 28, 3013–3015 (2006). https://doi.org/10.1039/B604688F

    Article  Google Scholar 

  21. V.R. Shinde, H.-S. Shim, T.P. Gujar, H.J. Kim, W.B. Kim, A solution chemistry approach for the selective formation of ultralong nanowire bundles of crystalline Cd(OH) 2 on substrates. Adv Mater. (2008). https://doi.org/10.1002/adma.200701828

    Article  Google Scholar 

  22. L.A. Saghatforoush, S. Sanati, R. Mehdizadeh, M. Hasanzadeh, Solvothermal synthesis of Cd(OH) 2 and CdO nanocrystals and application as a new electrochemical sensor for simultaneous determination of norfloxacin and lomefloxacin. Superlattices Microstruct. 52(4), 885–893 (2012). https://doi.org/10.1016/j.spmi.2012.07.019

    Article  ADS  Google Scholar 

  23. G. Yao, X. An, H. Lei, Y. Fu, W. Wu, Electronic and optical properties of rocksalt CdO: a first-principles density-functional theory study. Model. Numer. Simul. Mater. Sci. 03(01), 16–19 (2013). https://doi.org/10.4236/mnsms.2013.31b005

    Article  Google Scholar 

  24. A.A. Dakhel, Influence of hydrogenation on the electrical and optical properties of CdO: Tl thin films. Thin Solid Films 517(2), 886–890 (2008). https://doi.org/10.1016/j.tsf.2008.08.114

    Article  ADS  Google Scholar 

  25. P. Ghoranneviss, D. Dorranian, A.H. Sari, Effects of laser fluence on the Cd(OH)2/CdO nanostructures produced by pulsed laser ablation method. Opt. Quantum Electron. 51(3), 1–10 (2019). https://doi.org/10.1007/s11082-019-1809-9

    Article  Google Scholar 

  26. L.C.S. Murthy, R.K. Rao, Thickness dependent electrical properties of CdO thin films prepared by spray pyrolysis method. Bull. Mater. Sci. 22(6), 953–957 (1999)

    Article  Google Scholar 

  27. S.G. Ban, X.H. Liu, T. Ling, C.K. Dong, J. Yang, X.W. Du, CdO nanoflake arrays on ZnO nanorod arrays for efficient detection of diethyl ether. RSC Adv. 6(3), 2500–2503 (2016). https://doi.org/10.1039/C5RA24708J

    Article  ADS  Google Scholar 

  28. M. Zaien, K. Omar, Z. Hassan, Growth of nanostructured CdO by solid-vapor deposition. Int. J. Phys. Sci. 6(17), 4176–4180 (2011). https://doi.org/10.5897/IJPS11.568

    Article  Google Scholar 

  29. A. Tadjarodi, M. Imani, H. Kerdari, Adsorption kinetics, thermodynamic studies, and high performance of CdO cauliflower-like nanostructure on the removal of Congo red from aqueous solution. J. Nanostructure Chem. (2013). https://doi.org/10.1186/2193-8865-3-51

    Article  Google Scholar 

  30. G. Somasundaram, J. Rajan, P. Sangaiya, R. Dilip, Hydrothermal synthesis of CdO nanoparticles for photocatalytic and antimicrobial activities. Results Mater. 4, 100044 (2019). https://doi.org/10.1016/j.rinma.2019.100044

    Article  Google Scholar 

  31. T.L. Chu, S.S. Chu, Degenerate cadmium oxide films for electronic devices. JEM 19(9), 1003–1005 (1990). https://doi.org/10.1007/BF02652928

    Article  ADS  Google Scholar 

  32. H.I. Hussein, A.H. Shaban, I.H. Khudayer, I. Hussein, H. Shaban, H. Iman, Science direct enhancements of p-Si/CdO thin films solar Cells with doping (Sb, enhancements of p-Si/CdO thin films solar with doping (Sb, Sn, Se) Sn, Se) assessing the feasibility of using the heat dem. Energy Procedia 157, 150–157 (2019). https://doi.org/10.1016/j.egypro.2018.11.175

    Article  Google Scholar 

  33. P. Ghoranneviss, D. Dorranian, A. Hossein, Effects of laser fluence on the Cd (OH)2/CdO nanostructures produced by pulsed laser ablation method. Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-019-1809-9

    Article  Google Scholar 

  34. T. Prakash, A. Bonavita, G. Neri, E.R. Kumar, Microwave-assisted synthesis of Cd(OH)2/CdO nanorods: Effect of irradiation time. Superlattices Microstruct. 90, 117–123 (2016). https://doi.org/10.1016/j.spmi.2015.12.018

    Article  ADS  Google Scholar 

  35. C. Bhukkal, M. Chauhan, R. Ahlawat, Synthesis, structural and enhanced optoelectronic properties of Cd(OH)2/CdO nanocomposite. Phys. B Condens. Matter 582, 411973 (2020). https://doi.org/10.1016/j.physb.2019.411973

    Article  Google Scholar 

  36. C. Bhukkal, R. Ahlawat, Plate like Cd(OH)2–CdO nanocomposite: a study on surface morphology and band gap energy. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5122530

    Article  Google Scholar 

  37. A. Chetoui, M. Ghemid, M.R. Khelladi, A. Zouaoui, First synthesis of monodispersed microparticles of copper oxide films by pulsed spray pyrolysis (PSP): structural, optical, and morphological investigations. Appl. Phys. A Mater. Sci. Process. 126(1), 61 (2020). https://doi.org/10.1007/s00339-019-3240-2

    Article  ADS  Google Scholar 

  38. A. Salem, Silver-doped cadmium oxide nanoparticles: Synthesis, structural and optical properties. Eur. Phys. J. Plus (2014). https://doi.org/10.1140/epjp/i2014-14263-3

    Article  Google Scholar 

  39. Q. Li et al., Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production. Appl. Catal. B Environ. 229, 8–14 (2018). https://doi.org/10.1016/J.APCATB.2018.01.078

    Article  Google Scholar 

  40. S. Ko, G.D. Moon, J.P. Lee, S. Park, U. Jeong, Shape control of cadmium hydroxides (Cd(OH)2) sensitive to pH quenching depth and massive production of CdSe nanocrystals by their chemical transformation. Nanotechnology (2011). https://doi.org/10.1088/0957-4484/22/31/315604

    Article  Google Scholar 

  41. N.N. Greenwood, Chemistry of the Elements (Elsevier, Amsterdam, 1997) pp.645–746. https://doi.org/10.1016/C2009-0-30414-6; ISBN: 978-0-7506-3365-9

    Book  Google Scholar 

  42. S. Kumar, B. Ahmed, A.K. Ojha, J. Das, A. Kumar, Facile synthesis of CdO nanorods and exploiting its properties towards supercapacitor electrode materials and low power UV irradiation driven photocatalysis against methylene blue dye. Mater. Res. Bull. 90, 224–231 (2017). https://doi.org/10.1016/J.MATERRESBULL.2017.02.044

    Article  Google Scholar 

  43. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Multifunctional properties of CdO nanostructures Synthesised through microwave assisted hydrothermal method. Mater. Res. Innov. 23(5), 310–318 (2019). https://doi.org/10.1080/14328917.2018.1475443

    Article  Google Scholar 

  44. A.A. Baig et al., Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif. Tissue Int. 64(5), 437–449 (1999). https://doi.org/10.1007/PL00005826

    Article  Google Scholar 

  45. M.A. Yildirim, A. Ateş, Structural, optical and electrical properties of CdO/Cd(OH)2 thin films grown by the SILAR method. Sensors Actuators, A Phys. 155(2), 272–277 (2009). https://doi.org/10.1016/j.sna.2009.09.002

    Article  Google Scholar 

  46. T.P. Gujar, V.R. Shinde, W.Y. Kim, K.D. Jung, C.D. Lokhande, O.S. Joo, Formation of CdO films from chemically deposited Cd(OH) 2 films as a precursor. Appl. Surf. Sci. 254(13), 3813–3818 (2008). https://doi.org/10.1016/J.APSUSC.2007.12.015

    Article  ADS  Google Scholar 

  47. Z. Ganjiani, F. Jamali-Sheini, R. Yousefi, Electrochemical synthesis and physical properties of Sn-doped CdO nanostructures. Superlattices Microstruct. 100, 988–996 (2016). https://doi.org/10.1016/J.SPMI.2016.10.064

    Article  ADS  Google Scholar 

  48. B. Małecka, A. Łacz, Thermal decomposition of cadmium formate in inert and oxidative atmosphere. Thermochim. Acta 479(1–2), 12–16 (2008). https://doi.org/10.1016/j.tca.2008.09.003

    Article  Google Scholar 

  49. S. Balamurugan et al., Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities. Pacific Sci Rev. A Nat. Sci. Eng. 18(3), 228–232 (2016). https://doi.org/10.1016/j.psra.2016.10.003

    Article  Google Scholar 

  50. L.A. Saghatforoush, R. Mehdizadeh, S. Sanati, M. Hasanzadeh, Aqueous solution synthesis of plate-like Cd(OH) 2 nanostructures and their conversion to CdO nanoparticles. Synth. React. Inorg. Met. Nano-Metal Chem (2012). https://doi.org/10.1080/15533174.2012.680165

    Article  Google Scholar 

  51. C. Korzeniewski, Vibrational spectroscopy for the characterization of PEM fuel cell membrane materials, in Theory, Fundamentals, and Biocatalysis (John Wiley & Sons Inc, Hoboken, 2010) pp. 395–413.

    Chapter  Google Scholar 

  52. R.K. Mandal, M.D. Purkayastha, T. Pal Majumder, Silver modified cadmium oxide—a novel material for enhanced photodegradation of malachite green. Optik (Stuttg) 180, 174–182 (2019). https://doi.org/10.1016/j.ijleo.2018.11.066

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their heartfelt gratitude to Dr. A. Hadj Larbi for his efforts in performing the XRD characterizations and his contribution to promoting the quality of this work. The authors would also like to express their gratitude to Mr. A. Manseri for performing the SEM characterizations.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Naas.

Ethics declarations

Conflict of interests

The authors have declared that they have no potential conflicts of interest related to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naas, A., Chetoui, A., Ghalouci, L. et al. Physicochemical investigation of pure cadmium hydroxide Cd(OH)2 and Cd(OH)2–CdO composite material deposited by pneumatic spray pyrolysis technique. Appl. Phys. A 128, 512 (2022). https://doi.org/10.1007/s00339-022-05570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05570-5

Keywords

Navigation