Skip to main content

Advertisement

Log in

Structural, FTIR, optical, mechanical and magnetic properties of Zn1−xFexO with various Fe nanopowder additions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report here the structural, FTIR, optical, mechanical, and magnetic properties of Zn1−xFexO with various Fe nanopowder additions (0.00 ≤ x ≤ 0.30). The wurtzite structure and compressive stress are clearly conformed in all samples. Further, the lattice constants, crystallite size, porosity, strains, grain size, Debye temperature, and elastic modulus are increased as x increases to 0.05, followed by a decrease at x = 0.30, but they are higher than those of ZnO. Interestingly, two electronic transitions were observed for all samples corresponding to two values of energy gaps, Eg1 and Eg2. They were decreased from 3.25 and 3.72 eV to 3.00 and 3.60 eV, respectively. In contrast, an enhancement of the lattice constant ϵL, the density of charge carriers (N/m*), and the optical and electrical conductivities as x increases was obtained. For example, ϵL and charge carriers density (N/m*) for x = 0.30 doped sample are, respectively, 10 and 15 times more than those of ZnO. The refractive index (n) increases as x is increased, and a good correlation between n and Eg was obtained. Other parameters, such as the dissipation factor, surface and bulk loss functions, were also controlled by the variation of x. The non-linear optical parameters were also increased by increasing x, indicating not only the interesting optical properties of these materials but also the possibility of their optoelectronic applications. The Vickers hardness Hv is increased by increasing x to 0.30 and applying load to 9.8 N. In contrast, the surface energy γ, elastic indentation de, and resistance pressure decrease as x increases to 0.10, followed by an increase at x = 0.30. A noticeable ferromagnetic behavior with evaluated magnetization parameters is clearly obtained for the x = 0.10 sample. The saturation magnetization Ms is about 250 times greater than that of ZnO, which supports the room temperature ferromagnetic (RTFM) for the Fe-doped sample. These findings indicate that the addition of Fe as nanopowder to ZnO is promising for altering plastic flow region, optoelectronic, high-power operating and spintronic devices, which highlights the present investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. V.N. Jahafarova, G.S. Orudzhev, S.S. Guseinova, V.R. Stempitskii, M.S. Baranova, Semiconductors 52(8), 1047–1050 (2018). https://doi.org/10.1134/S1063782618080055

    Article  ADS  Google Scholar 

  2. E.I. Gorokhova, P.A. Rodnyi, K.A. Chernenko, G.V. Anan’eva, S.B. Eron’ko, E.A. Oreshchenko, I.V. Khodyuk, E.P. Lokshin, G.B. Kunshina, O.G. Gromov, K.P. Lott, J. Opt. Technol. 78(11), 753–760 (2011). https://doi.org/10.1364/JOT.78.000753

    Article  Google Scholar 

  3. Kharchenko A.A., Bumai Yu.B., Gumarov A.I., Lukashevich M.G., Nuzhdin V.I., Khaibullin R.I., Odzhaev V.B. , Bulletin of Belarusian State University: Ser. 1: Physics. Mathematics. Informatics. 1, 20–25 (2014).

  4. I. Kazeminezhad, S. Saadatmand, R. Yousefi, Bull. Mater. Sci. 39(3), 719–724 (2016). https://doi.org/10.1007/s12034-016-1206-y

    Article  Google Scholar 

  5. R.A. Jagannatha, M.K. Kokila, H. Nagabhushana, S.C. Sharma, J.L. Rao, C. Shivakumara, B.M. Nagabhushana, R.P.S. Chakradhar, Mater. Chem. Phys. 133(23), 876–883 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.111

    Article  Google Scholar 

  6. M. Silambarasan, S. Saravanan, T. Soga, Int. J. ChemTech Res. 7(3), 1644–1650 (2015)

    Google Scholar 

  7. X.Y. Xu, C.B. Cao, J. Alloys Compd. 265, 501 (2010)

    Google Scholar 

  8. H. Morkoç, Ü. Özgür, Zinc oxide: fundamentals, materials and device technology, 1st edn. (WILEY-VCH, Weinheim, 2009). (ISBN 978-3-527-40813-9)

    Google Scholar 

  9. M. Mustaqima, C. Liu, ZnO-based nanostructures for diluted magnetic semiconductor. Turk. J. Phys. 38, 429–441 (2014)

    Google Scholar 

  10. I. Djerdj, Z. Jaglicic, D. Arcon, M. Niederberger, Co-doped ZnO nanoparticles: minireview. Nanoscale 2, 1096–1104 (2010)

    ADS  Google Scholar 

  11. Z. Yang, A perspective of recent progress in ZnO diluted magnetic semiconductors. Appl. Phys. A 112, 241–254 (2013)

    ADS  Google Scholar 

  12. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    ADS  Google Scholar 

  13. S.A. Amin, A. Sedky, Mater. Res. Express 6, 065903 (2019)

    ADS  Google Scholar 

  14. S. Choopun, R. Vispute, W. Noch, A. Balsamo, R. Sharma, T. Venkatesan, A. Iliadisand, D. Look, Appl. Phys. Lett. 75, 3947–3949 (1999)

    ADS  Google Scholar 

  15. X.D. Wang, J. Zhou, J.H. Song, J. Liu, N. Xu, Z.L. Wang, Nano Lett. 6, 2768–2772 (2006)

    ADS  Google Scholar 

  16. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 16, 323–331 (2002)

    Google Scholar 

  17. R.-J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, J. Alloys Compd. 616, 614 (2014)

    Google Scholar 

  18. X.-F. Fang, J. Kennedy, D.A. Carder, J. Futter, P.P. Murmu, J. Nanosci. Naotechnol. 10(12), 8239 (2010)

    Google Scholar 

  19. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Appl. Surf. Sci. 367, 52 (2016)

    ADS  Google Scholar 

  20. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nat. Mater. 4, 455–459 (2005)

    ADS  Google Scholar 

  21. S.C. Navale, S.W. Gosavi, I.S. Mulla, Talanta 75, 1315–1319 (2008)

    Google Scholar 

  22. J. Zhang, S. Wang, Y. Wang, Xu. Mijuan, H. Xia, S. Zhang, W. Huang, X. Guo, Wu. Shihua, Sens. Actuators B 139, 411–417 (2009)

    Google Scholar 

  23. S. Singh, P. Dey, J.N. Roy, S.K. Mandal, J. Alloys Compd. 642, 15–21 (2015)

    Google Scholar 

  24. K. Irshad, M.T. Khan, A. Murtaza, Phys. B Condens. Matter 543, 1–6 (2018)

    ADS  Google Scholar 

  25. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Phys. B Condens. Matter 537, 167–175 (2018)

    ADS  Google Scholar 

  26. R. Joshi, P. Kumar, A. Gaur, K. Asokan, Appl. Nanosci. 4, 531–536 (2014)

    ADS  Google Scholar 

  27. H. Saadi, F.I.H. Rhouma, Z. Benzarti, Z. Bougrioua, S. Guermazi, K. Khirouni, Mater. Res. Bull. 129, 110884 (2020)

    Google Scholar 

  28. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, S.N. Heo, B.H. Koo, Acta Mater. 60, 5190–5196 (2012)

    ADS  Google Scholar 

  29. W. Huang, X. Tanga, I. Felnerb, Y. Koltypin, A. Gedanken, Mater. Res. Bul. 37, 1721–1735 (2002)

    Google Scholar 

  30. K. Singh, V. Devi, R. Dhar, D. Mohan, Superlattices Microstruct. 85, 433–437 (2015)

    ADS  Google Scholar 

  31. A.V. Pashkevich, A.K. Fedotov, Y.V. Kasyuk, L.A. Bliznyuk, J.A. Fedotova, N.A. Basov, A.S. Fedotov, I.A. Svito, E.N. Poddenezhny, Modern. Electr. Mater. 4(3), 87–95 (2018)

    Google Scholar 

  32. B.P. Kafle, S. Acharya, S. Thapa, S. Poudel, Ceramics. Int. 42(1), 1133–1139 (2016)

    Google Scholar 

  33. P. Sahay, S. Tewari, R. Nath, S. Jha, M. Shamsuddin, Studies on ac response of zinc oxide pellets. J. Mater. Sci. 43(13), 4534–4540 (2008)

    ADS  Google Scholar 

  34. J. Jose, M. AbdulKhadar, Role of grain boundaries on the electrical conductivity of nanophase zinc oxide. Mater. Sci. Eng. A 304, 810–813 (2001)

    Google Scholar 

  35. A. Roychowdhury, S.P. Pati, A.K. Mishra, S. Kumar, D. Das, J. Phys. Chem. Solids 74(6), 811–818 (2013)

    ADS  Google Scholar 

  36. J. Hwang, T. Timusk, G.D. Gu, Nature 427, 714 (2004)

    ADS  Google Scholar 

  37. M. Norman, Nature 427, 692 (2004)

    ADS  Google Scholar 

  38. H. Kumar, R. Rani, Int. Lett. Chem. Phys. Astronomy 14, 26 (2013)

    Google Scholar 

  39. W.R.W. Abdullah, A. Zakaria, M. Sabri, M. Ghazali, Int. J. Mol. Sci. 13, 5278 (2012)

    Google Scholar 

  40. A.F. Al-Naim, A. Sedky, N. Afify, S.S. Ibrahim, Appl. Phys. A. 127(11), 1–20 (2021)

    Google Scholar 

  41. J. Gong, J. Wu, Z. Guan, J. Eur. Ceram. Soc. 19(15), 2625 (1999)

    Google Scholar 

  42. A.A. Elmustafa, D.S. Stone, J. Mech. Phys. Solid 51, 357 (2003)

    ADS  Google Scholar 

  43. M. Musa Abbas, Int. J. Current. Eng. Tech. 5(3), 1908 (2015)

    Google Scholar 

  44. D. Ravinder, T. Alivelu Manga, J. Alloys. Compd. 299, 5 (2000)

    Google Scholar 

  45. S. Banerjee and A.K. Tyagi, Funct. Mater. Preparation. Process. Appl, 1st Edn, (2012)

  46. G. Schmidt, Encyclopedia Mater Sci Technol. (2004). https://doi.org/10.1016/B0-08-043152-6/01898-2

    Article  Google Scholar 

  47. K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005)

    ADS  Google Scholar 

  48. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 2(39), L555 (2000)

    ADS  Google Scholar 

  49. Y. Medkour, A. Roumili, D. Maouche, M. Maamache, Solid. State. Commun. 151(24), 1916 (2011)

    ADS  Google Scholar 

  50. S.K. Mandal, A.K. Das, T.K. Nath, D. Karmakar, Appl Phys Lett 89, 144105 (2006)

    ADS  Google Scholar 

  51. J. Zhang, X.Z. Li, J. Shi, Y.F. Lu, D.J. Sellmyer, J. Phys. Condens. Matter. 19, 036210 (2007)

    ADS  Google Scholar 

  52. S.A. Ahmed, Results Phys. 7, 604–610 (2017)

    ADS  Google Scholar 

  53. C. Veerender, V.R. Dumke, M. Nagabhooshanam, Phys. Status Solid A 144, 199 (1994)

    Google Scholar 

  54. G. Pei, C. Xia, S. Cao, J. Zhang, Wu. Feng, Xu. Jun, JMMM 302(2), 340 (2006)

    ADS  Google Scholar 

  55. A. Sedky, Braz. J physics 44(4), 305 (2014)

    Google Scholar 

  56. A. Sedky, S.B. Mohamed, Mater. Sci. Pol. 32(1), 16 (2014)

    ADS  Google Scholar 

  57. U. Seetawan, S. Jugsujinda, T. Seetawan, A. Ratchasin, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, Mater. Sci. Appl. 2, 1302 (2011)

    Google Scholar 

  58. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3(1), e00285 (2017)

    Google Scholar 

  59. A. Sedky, Adv. Material Sci. Eng. 2, 1 (2018)

    ADS  Google Scholar 

  60. S.A. Amin, A. Sedky, Mater. Res. Express 6, 065903 (2019)

    ADS  Google Scholar 

  61. X. Li, X. Cao, Xu. Liang, L. Liu, Y. Wang, C. Meng, Z. Wang, J. Alloys. Compd. 675, 90 (2016)

    Google Scholar 

  62. A. Sedky, M. Abu-Abdeen, A.-A.A. Almulhem, Physica B 388, 266 (2007)

    ADS  Google Scholar 

  63. A. Sedky, A. MossadAli, M. Mohamed, Opt. Quantum Electron. 52(42), 1 (2020)

    Google Scholar 

  64. C.M. Jay, M. Sathya, K. Pushpanathan, Acta. Metall. Sin. (Engl. Lett.) 28, 394 (2015)

    Google Scholar 

  65. N. Srinivasan, J.C. Kannan, Mater. Sci Poland. 33, 205 (2015)

    ADS  Google Scholar 

  66. M. Chaari, A. Matoussi, Z. Fakhfakh, Mater. Sci. Appl. 2, 765–66 (2011)

    Google Scholar 

  67. T.P. Rao, M.C.S. Kumar, A. Safarullaa, V. Ganesan, S.R. Barman, C. Sanjeeviraja, Physica B 405(9), 2226 (2010)

    ADS  Google Scholar 

  68. H.C. Ong, A.X.E. Zhu, G.T. Du, Appl. Phys. Lett. 80, 941 (2002)

    ADS  Google Scholar 

  69. C. Wang, P. Zhang, J. Yue, Y. Zhang, L. Zheng, Physica B 403, 2235 (2008)

    ADS  Google Scholar 

  70. D.I. Rusu, G.G. Rusu, D. Luca, Acta Phys. Pol. A 119(6), 850 (2011)

    ADS  Google Scholar 

  71. W. Muhammad, N. Ullah, M. Haroona, B. HaiderAbbas, RSC Adv. 9, 29541 (2019)

    ADS  Google Scholar 

  72. T. Srinivasulu, K. Saritha, K.T. Ramakrishna Reddy, Mod. Electron. Mater. 3(2), 76–85 (2017)

    Google Scholar 

  73. K. Raja, P.S. Ramesh, D. Geetha, Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method, spectrochem. Acta A Mol. Biomol Spectrosc. 131, 183–188 (2014)

    ADS  Google Scholar 

  74. M. M. B. Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, K. Sopian (2013) The effect of process parameters on the size of ZnO nanoparticles synthesized via the solgel technique. J. Alloy. Compd. 550, 63–70.

    Google Scholar 

  75. J. Santhoshkumar, S. V. Kumar and S. Rajeshkumar. Resour. Eff. Technol. 3, 459–465 (2017)

    Google Scholar 

  76. A. Sanmugam, D. Vikraman, S. Venkatesan and H.J. Park. J. Nanomater. 7536364, 1–8 (2017)

    Google Scholar 

  77. M. Haase, H. Weller, A. Henglein, J. Phys. Chem. 92(2), 482 (1988)

    Google Scholar 

  78. P. Mitra, S. Mondal, Structural and morphological characterization of ZnO thin films synthesized by successive ion layer adsorption and reaction. Prog. Theor. Appl. Phys. 1, 17–31 (2013)

    Google Scholar 

  79. S.A. Mazen, H.M. Zaki, S.F. Mansour, Int. J. Pure Appl. Phys. 3, 40 (2007)

    Google Scholar 

  80. D. El-Said Bakeer, Appl. Phys. A. 126, 443 (2020). https://doi.org/10.1007/s00339-020-03625-z

    Article  ADS  Google Scholar 

  81. A.V. Anupama, V. Rathod, V.M. Jali, B. Sahoo, J. Alloys Compd. 728, 1091 (2017)

    Google Scholar 

  82. K.B. Modi, P.Y. Raval, S.J. Shah, Inorg. Chem. 54, 1543 (2015)

    Google Scholar 

  83. K.B. Modi, J.D. Gajera, M.P. Pandya, H.G. Vora, H.H. Joshi, Pramana 62, 1173 (2004)

    ADS  Google Scholar 

  84. S.M. Patange, S.E. Shirsath, S.P. Jadhav, J. Mol. Struct. 1038, 40 (2013)

    ADS  Google Scholar 

  85. B. Rajesh Babu, T. Tatarchuk, Mater. Chem. Phys. 207, 534 (2018)

    Google Scholar 

  86. J. Tauc, Amorphous and liquid semiconductors, 1st edn. (Plenum, New York, 1974)

    Google Scholar 

  87. M.M. El-Nahass, H.S. Soliman, A. El-Denglawey, Appl. Phys. A 122, 775 (2016)

    ADS  Google Scholar 

  88. A. El-Denglawey, J. Lumin. 194, 381 (2018)

    Google Scholar 

  89. A. Sedky, S.A. Amin, M. Mohamed, Appl. Phys. A 125, 308 (2019)

    ADS  Google Scholar 

  90. A. Sedky, A. M. Ali, H. H. Somaily and H. Algarni, Opt. Quantum. Electr. 55(243):1–21 (2021)

    Google Scholar 

  91. R. Mohammadigharehbagh, S. Pat, N. Akkurt, and Ş. Korkmaz, Phys. B Condens. Matter 609, 412921 (2021).

  92. R. Selvanayaki, M. Rameshbabu, S. Muthupandi, M. Razia, S. Sasi Florence, K. Ravichandran, K. Prabha, Mater. Today Proc. 49, 2628–2631 (2021)

    Google Scholar 

  93. Z.N. Kayani, E. Abbas, Z. Saddiqe, S. Riaz, S. Naseem, Mater. Sci. Semicond. Process. 88, 109–119 (2018)

    Google Scholar 

  94. D.J. Gravesteijn, Appl. Opt. 27, 736 (1988)

    ADS  Google Scholar 

  95. S.K. Tripathy, Opt. Mater. (Amst). 46, 240 (2015)

    ADS  Google Scholar 

  96. T.S. Moss, Proc. Phys. Soc. Sect. B 63, 167 (1950)

    ADS  Google Scholar 

  97. A.Z. Mahmoud, M. Mohamed, E.A. Davis, N.F. Mott, N.M. Ravindra, S. Auluck, V.K. Srivastava, Appl. Phys. A 125, K155 (1979)

    Google Scholar 

  98. P. Hervé, L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994)

    ADS  Google Scholar 

  99. R.R. Reddy, S. Anjaneyulu, Phys. Status Solidi 174, K91 (1992)

    ADS  Google Scholar 

  100. V.P. Gupta, N.M. Ravindra, Phys. Status Solidi 100, 715 (1980)

    Google Scholar 

  101. V. Kumar, J.K. Singh, Indian J. Pure Appl. Phys. 48, 571 (2010)

    Google Scholar 

  102. N.F. Mott, Philos. Mag. 22, 7 (1970)

    ADS  Google Scholar 

  103. M. Mohamed, A.M. Abdelraheem, M.I. Abd-Elrahman, N.M.A. Hadia, E.R. Shaaban, Appl. Phys. A 125, 483 (2019)

    ADS  Google Scholar 

  104. S. Moustafa, M. Mohamed, M.A. Abdel-Rahim, Opt. Quant. Electron. 51, 337 (2019)

    Google Scholar 

  105. F. Abeles, Optical properties of solids (North-Holland Publishing Company, London, 1972)

    MATH  Google Scholar 

  106. S. H. Wemple and M. Domenico der, Phys. Rev. B 3, 1338 (1971)

  107. M. Kincl, L. Tichý, Mater. Chem. Phys. 110, 322 (2008)

    Google Scholar 

  108. J. Gong, J. Wu, Z. Guan, J. Eur. Ceram. Soc. 19(15), 2625 (1999)

    Google Scholar 

  109. H.A. Cetinkara, M. Nursoy, O. Ozturk, C. Terzioglu, Physica C 442, 101 (2006)

    ADS  Google Scholar 

  110. F. Frohlinch, P. Grau, W. Grellmann, Phys. Status Solidi 42, 79 (1997)

    ADS  Google Scholar 

  111. A.D.M. dos Santos, G.S. Pinto, B. Ferreira, A.J.S. Machado, Physica C 354, 388 (2001)

    ADS  Google Scholar 

  112. Z. Li, A. Ghosh, A.S. Kobayashi, J. Ami Soc. 72, 904 (1989)

    Google Scholar 

  113. D.R. Clarke, J. Am. Ceram. Soc. 82(3), 485 (1999)

    Google Scholar 

  114. M. Diaconu, H. Schmidt, H. Hochmuthand, M. Lorenz, JMMM 307, 212 (2006)

    ADS  Google Scholar 

  115. D. Sanyal, M. Chakrabarti, T.K. Roy, A. Chakrabarti, Phys. Lett. A 371, 482 (2007)

    ADS  Google Scholar 

  116. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, T. Tietze, E. Goering, G. Schütz, P.B. Straumal, B. Baretzky, Beilstein J. Nanotechnol. 4, 361 (2013)

    Google Scholar 

  117. E.E. Ateia, A.A.H. El-Bassuony, G. Abdelatief, F.S. Soliman, J. Mater. Sci. 28, 241 (2017)

    Google Scholar 

  118. A.A.H. El-Bassuony, H.K. Abdelsalam, J. Supercond. Nov. magn. (2017). https://doi.org/10.1007/s10948-017-4340-x

    Article  Google Scholar 

  119. G. Srinet, R. Kumar, V. Sajal, J. Appl. Phys. 114, 033912 (2013)

    ADS  Google Scholar 

  120. J.M.D. Coey, S.A. Chambers, MRS Bull. 33, 1053 (2008)

    Google Scholar 

  121. A. Samanta, M.N. Goswami, P.K. Mahapatra, J. Alloys Compd. 730, 399 (2018)

    Google Scholar 

  122. M. Mohamed, A. Sedky, A.S. Alshammari, Mohamed, Optical. J. Mater. Sci. 32, 5186–5198 (2021)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the Scientific Research Deanship at University of Ha’il-Saudi Arabia through project number RG-21022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Our manuscript is original and has not been published elsewhere. In addition, it is not under consideration for publication in other journals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M., Sedky, A., Alshammari, A.S. et al. Structural, FTIR, optical, mechanical and magnetic properties of Zn1−xFexO with various Fe nanopowder additions. Appl. Phys. A 128, 408 (2022). https://doi.org/10.1007/s00339-022-05506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05506-z

Keywords

Navigation