Skip to main content

Sputtered WOx thin film as the electron transport layer for efficient perovskite solar cells

Abstract

The electron transport layer (ETL) is critical in perovskite solar cells (PSCs) as it controls the optics of the complete solar cell. This study uses an industrially viable RF magnetron sputtering technique to prepare the tungsten oxide (WOx) ETL for PSCs. Necessary morphological and optoelectronic investigations were carried out to ensure the high-quality WOx thin-film. The influence of the deposition power on the ETL thickness and PSC optics were systematically investigated. A three-dimensional (3D) finite-difference time-domain (FDTD) approach analyses the optics and optimization of the complete solar cell. The investigations allow the optimized planar PSC to determine the JSC of > 21 mA/cm2. The optical performance of the planar device is limited due to higher optical losses; hence, the current study proposes a PSC design embedded with Ag nanoparticles. The proposed PSC can improve the JSC by ~ 17% (up to 24.5 mA/cm2) than the planar device owing to improved light trapping, further boosting the PSC's energy conversion efficiency (ECE). A detailed discussion on film realization and solar cell optics is provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovoltaics Res. Appl. 30, 3 (2022)

    Article  Google Scholar 

  2. M. Shahiduzzaman, M. Ismail Hossain, S. Otani, L. Wang, S. Umezu, T. Kaneko, S. Iwamori, K. Tomita, Y. Hong Tsang, M. Akhtaruzzaman, D. Knipp, J.-M. Nunzi, M. Isomura, J. Antonio Zapien, T. Taima, Chem. Eng. J. 426, 131831 (2021)

    Article  Google Scholar 

  3. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  4. A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119, 3036 (2019)

    Article  Google Scholar 

  5. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovoltaics Res. Appl. 28, 629 (2020)

    Article  Google Scholar 

  6. S. Mahjabin, M.M. Haque, K. Sobayel, M.S. Jamal, M.A. Islam, V. Selvanathan, A.K. Assaifan, H.F. Alharbi, K. Sopian, N. Amin, M. Akhtaruzzaman, IEEE Access 8, 106346 (2020)

    Article  Google Scholar 

  7. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26, 6503 (2014)

    Article  Google Scholar 

  8. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582 (2015)

    Article  Google Scholar 

  9. M.I. Hossain, A.M. Saleque, S. Ahmed, I. Saidjafarzoda, M. Shahiduzzaman, W. Qarony, D. Knipp, N. Biyikli, Y.H. Tsang, Nano Energy 79, 105400 (2021)

    Article  Google Scholar 

  10. J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, Chem. Rev. 120, 7867 (2020)

    Article  Google Scholar 

  11. P. Zhang, F. Yang, G. Kapil, Q. Shen, T. Toyoda, K. Yoshino, T. Minemoto, S.S. Pandey, T. Ma, S. Hayase, Org. Electron. 62, 615 (2018)

    Article  Google Scholar 

  12. M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, K.H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, Sol. Energy Mater. Sol. Cells 159, 251 (2017)

    Article  Google Scholar 

  13. M.I. Hossain, W. Qarony, V. Jovanov, Y.H. Tsang, D. Knipp, J. Mater. Chem. A 6, 3625 (2018)

    Article  Google Scholar 

  14. T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Nat. Energy 3, 828 (2018)

    Article  ADS  Google Scholar 

  15. S. Mahjabin, M. Mahfuzul Haque, S. Khan, V. Selvanathan, M.S. Jamal, M.S. Bashar, H.I. Alkhammash, M. Ismail Hossain, M. Shahiduzzaman, N. Amin, K. Sopian, M. Akhtaruzzaman, Sol. Energy 222, 202 (2021)

    Article  ADS  Google Scholar 

  16. W. Qarony, M. Kozawa, H.A. Khan, M.I. Hossain, A. Salleo, Y.H. Tsang, J.Y. Hardeberg, H. Fujiwara, D. Knipp, Adv. Mater. Interfaces 7, 2000459 (2020)

    Article  Google Scholar 

  17. M.I. Hossain, H.A. Khan, M. Kozawa, W. Qarony, A. Salleo, J.Y. Hardeberg, H. Fujiwara, Y.H. Tsang, D. Knipp, A.C.S. Appl, Mater. Interfaces 12, 47831 (2020)

    Article  Google Scholar 

  18. W. Shockley, H. Queisser, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

  19. M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony, S. Umezu, K. Tomita, S. Iwamori, D. Knipp, Y.H. Tsang, M. Akhtaruzzaman, J.-M. Nunzi, T. Taima, M. Isomura, Nano-Micro Lett. 13, 36 (2021)

    Article  ADS  Google Scholar 

  20. M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Nano-Micro Lett. 11, 58 (2019)

    Article  ADS  Google Scholar 

  21. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, J. Phys. Chem. Lett. 5, 1004 (2014)

    Article  Google Scholar 

  22. A. Amtout, R. Leonelli, Phys. Rev. B 51, 6842 (1995)

    Article  ADS  Google Scholar 

  23. S. Badilescu, Solid State Ionics 158, 187 (2003)

    Article  Google Scholar 

  24. M.I. Hossain, A.K.M. Hasan, W. Qarony, M. Shahiduzzaman, M.A. Islam, Y. Ishikawa, Y. Uraoka, N. Amin, D. Knipp, M. Akhtaruzzaman, Y.H. Tsang, Small Methods 4, 2000454 (2020)

    Article  Google Scholar 

  25. M. Shahiduzzaman, M. Karakawa, K. Yamamoto, T. Kusumi, K. Yonezawa, T. Kuwabara, K. Takahashi, T. Taima, Sol. Energy Mater. Sol. Cells 178, 1 (2018)

    Article  Google Scholar 

  26. M.I. Hossain, M. Shahiduzzaman, S. Ahmed, M.R. Huqe, W. Qarony, A.M. Saleque, M. Akhtaruzzaman, D. Knipp, Y.H. Tsang, T. Taima, J.A. Zapien, Nano Energy 89, 106388 (2021)

    Article  Google Scholar 

  27. S. Haque, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato, R. Martins, Nano Energy 59, 91 (2019)

    Article  Google Scholar 

  28. W. Qarony, M.I. Hossain, A. Tamang, V. Jovanov, A. Salleo, D. Knipp, Y.H. Tsang, J. Mater. Chem. C 7, 10289 (2019)

    Article  Google Scholar 

  29. M.I. Hossain, A. Hongsingthong, W. Qarony, P. Sichanugrist, M. Konagai, A. Salleo, D. Knipp, Y.H. Tsang, A.C.S. Appl, Mater. Interfaces 11, 14693 (2019)

    Article  Google Scholar 

  30. K. Li, S. Haque, A. Martins, E. Fortunato, R. Martins, M.J. Mendes, C.S. Schuster, Optica 7, 1377 (2020)

    Article  ADS  Google Scholar 

  31. M.I. Hossain, M. Shahiduzzaman, A.M. Saleque, M.R. Huqe, W. Qarony, S. Ahmed, M. Akhtaruzzaman, D. Knipp, Y.H. Tsang, T. Taima, J.A. Zapien, Sol. RRL 5, 2100509 (2021)

    Article  Google Scholar 

  32. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, J. Cryst. Growth 274, 474 (2005)

    Article  ADS  Google Scholar 

  33. K. Saito, T. Yamashita, D. Kouno, T. Tanaka, M. Nishio, Q. Guo, H. Ogawa, J. Cryst. Growth 298, 449 (2007)

    Article  ADS  Google Scholar 

  34. K.V. Madhuri, M.B. Babu, Mater. Today Proc. 3, 84 (2016)

    Article  Google Scholar 

  35. A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Opt. Quantum Electron. 52, 335 (2020)

    Article  Google Scholar 

  36. W. Qarony, M.I. Hossain, R. Dewan, S. Fischer, V.B. Meyer-Rochow, A. Salleo, D. Knipp, Y.H. Tsang, Adv. Theory Simul. 1, 1800030 (2018)

    Article  Google Scholar 

  37. M.I. Hossain, A. Mohammad, W. Qarony, S. Ilhom, D.R. Shukla, D. Knipp, N. Biyikli, Y.H. Tsang, RSC Adv. 10, 14856 (2020)

    Article  ADS  Google Scholar 

  38. F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J.J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Nat. Mater. 17, 820 (2018)

    Article  ADS  Google Scholar 

  39. J. Werner, G. Nogay, F. Sahli, T.C.-J. Yang, M. Bräuninger, G. Christmann, A. Walter, B.A. Kamino, P. Fiala, P. Löper, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, ACS Energy Lett. 3, 742 (2018)

    Article  Google Scholar 

  40. C.-H. Chiang, C.-G. Wu, ACS Nano 12, 10355 (2018)

    Article  Google Scholar 

  41. Y. Wang, Y. Liang, Y. Zhang, W. Yang, L. Sun, D. Xu, Adv. Funct. Mater. 28, 1801237 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Universiti Kebangsaan Malaysia, Malaysia for financial support through the Long-term Research Grant Scheme (LRGS/1/2019/ UKM-UKM/6/1). The work is partly supported by the Bangabandhu Fellowship Trust (BBFT), Bangladesh. The authors extend their appreciation for funding to Researchers Supporting Project number (RSP-2021/34), King Saud University, Riyadh, Saudi Arabia. We also acknowledge the Bangladesh Council of Scientific and Industrial Research for supporting using their experimental laboratories.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ismail Hossain, M. S. Bashar or Md. Akhtaruzzaman.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahjabin, S., Hossain, M.I., Haque, M.M. et al. Sputtered WOx thin film as the electron transport layer for efficient perovskite solar cells. Appl. Phys. A 128, 358 (2022). https://doi.org/10.1007/s00339-022-05500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05500-5

Keywords

  • WOx thin film
  • Electron transport layer
  • Magnetron sputtering
  • Perovskite solar cell optics
  • FDTD