Abstract
The electron transport layer (ETL) is critical in perovskite solar cells (PSCs) as it controls the optics of the complete solar cell. This study uses an industrially viable RF magnetron sputtering technique to prepare the tungsten oxide (WOx) ETL for PSCs. Necessary morphological and optoelectronic investigations were carried out to ensure the high-quality WOx thin-film. The influence of the deposition power on the ETL thickness and PSC optics were systematically investigated. A three-dimensional (3D) finite-difference time-domain (FDTD) approach analyses the optics and optimization of the complete solar cell. The investigations allow the optimized planar PSC to determine the JSC of > 21 mA/cm2. The optical performance of the planar device is limited due to higher optical losses; hence, the current study proposes a PSC design embedded with Ag nanoparticles. The proposed PSC can improve the JSC by ~ 17% (up to 24.5 mA/cm2) than the planar device owing to improved light trapping, further boosting the PSC's energy conversion efficiency (ECE). A detailed discussion on film realization and solar cell optics is provided.
This is a preview of subscription content, access via your institution.







References
M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovoltaics Res. Appl. 30, 3 (2022)
M. Shahiduzzaman, M. Ismail Hossain, S. Otani, L. Wang, S. Umezu, T. Kaneko, S. Iwamori, K. Tomita, Y. Hong Tsang, M. Akhtaruzzaman, D. Knipp, J.-M. Nunzi, M. Isomura, J. Antonio Zapien, T. Taima, Chem. Eng. J. 426, 131831 (2021)
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)
A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119, 3036 (2019)
M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovoltaics Res. Appl. 28, 629 (2020)
S. Mahjabin, M.M. Haque, K. Sobayel, M.S. Jamal, M.A. Islam, V. Selvanathan, A.K. Assaifan, H.F. Alharbi, K. Sopian, N. Amin, M. Akhtaruzzaman, IEEE Access 8, 106346 (2020)
Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26, 6503 (2014)
A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582 (2015)
M.I. Hossain, A.M. Saleque, S. Ahmed, I. Saidjafarzoda, M. Shahiduzzaman, W. Qarony, D. Knipp, N. Biyikli, Y.H. Tsang, Nano Energy 79, 105400 (2021)
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, Chem. Rev. 120, 7867 (2020)
P. Zhang, F. Yang, G. Kapil, Q. Shen, T. Toyoda, K. Yoshino, T. Minemoto, S.S. Pandey, T. Ma, S. Hayase, Org. Electron. 62, 615 (2018)
M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, K.H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, Sol. Energy Mater. Sol. Cells 159, 251 (2017)
M.I. Hossain, W. Qarony, V. Jovanov, Y.H. Tsang, D. Knipp, J. Mater. Chem. A 6, 3625 (2018)
T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Nat. Energy 3, 828 (2018)
S. Mahjabin, M. Mahfuzul Haque, S. Khan, V. Selvanathan, M.S. Jamal, M.S. Bashar, H.I. Alkhammash, M. Ismail Hossain, M. Shahiduzzaman, N. Amin, K. Sopian, M. Akhtaruzzaman, Sol. Energy 222, 202 (2021)
W. Qarony, M. Kozawa, H.A. Khan, M.I. Hossain, A. Salleo, Y.H. Tsang, J.Y. Hardeberg, H. Fujiwara, D. Knipp, Adv. Mater. Interfaces 7, 2000459 (2020)
M.I. Hossain, H.A. Khan, M. Kozawa, W. Qarony, A. Salleo, J.Y. Hardeberg, H. Fujiwara, Y.H. Tsang, D. Knipp, A.C.S. Appl, Mater. Interfaces 12, 47831 (2020)
W. Shockley, H. Queisser, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)
M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony, S. Umezu, K. Tomita, S. Iwamori, D. Knipp, Y.H. Tsang, M. Akhtaruzzaman, J.-M. Nunzi, T. Taima, M. Isomura, Nano-Micro Lett. 13, 36 (2021)
M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Nano-Micro Lett. 11, 58 (2019)
Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, J. Phys. Chem. Lett. 5, 1004 (2014)
A. Amtout, R. Leonelli, Phys. Rev. B 51, 6842 (1995)
S. Badilescu, Solid State Ionics 158, 187 (2003)
M.I. Hossain, A.K.M. Hasan, W. Qarony, M. Shahiduzzaman, M.A. Islam, Y. Ishikawa, Y. Uraoka, N. Amin, D. Knipp, M. Akhtaruzzaman, Y.H. Tsang, Small Methods 4, 2000454 (2020)
M. Shahiduzzaman, M. Karakawa, K. Yamamoto, T. Kusumi, K. Yonezawa, T. Kuwabara, K. Takahashi, T. Taima, Sol. Energy Mater. Sol. Cells 178, 1 (2018)
M.I. Hossain, M. Shahiduzzaman, S. Ahmed, M.R. Huqe, W. Qarony, A.M. Saleque, M. Akhtaruzzaman, D. Knipp, Y.H. Tsang, T. Taima, J.A. Zapien, Nano Energy 89, 106388 (2021)
S. Haque, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato, R. Martins, Nano Energy 59, 91 (2019)
W. Qarony, M.I. Hossain, A. Tamang, V. Jovanov, A. Salleo, D. Knipp, Y.H. Tsang, J. Mater. Chem. C 7, 10289 (2019)
M.I. Hossain, A. Hongsingthong, W. Qarony, P. Sichanugrist, M. Konagai, A. Salleo, D. Knipp, Y.H. Tsang, A.C.S. Appl, Mater. Interfaces 11, 14693 (2019)
K. Li, S. Haque, A. Martins, E. Fortunato, R. Martins, M.J. Mendes, C.S. Schuster, Optica 7, 1377 (2020)
M.I. Hossain, M. Shahiduzzaman, A.M. Saleque, M.R. Huqe, W. Qarony, S. Ahmed, M. Akhtaruzzaman, D. Knipp, Y.H. Tsang, T. Taima, J.A. Zapien, Sol. RRL 5, 2100509 (2021)
X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, J. Cryst. Growth 274, 474 (2005)
K. Saito, T. Yamashita, D. Kouno, T. Tanaka, M. Nishio, Q. Guo, H. Ogawa, J. Cryst. Growth 298, 449 (2007)
K.V. Madhuri, M.B. Babu, Mater. Today Proc. 3, 84 (2016)
A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Opt. Quantum Electron. 52, 335 (2020)
W. Qarony, M.I. Hossain, R. Dewan, S. Fischer, V.B. Meyer-Rochow, A. Salleo, D. Knipp, Y.H. Tsang, Adv. Theory Simul. 1, 1800030 (2018)
M.I. Hossain, A. Mohammad, W. Qarony, S. Ilhom, D.R. Shukla, D. Knipp, N. Biyikli, Y.H. Tsang, RSC Adv. 10, 14856 (2020)
F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J.J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Nat. Mater. 17, 820 (2018)
J. Werner, G. Nogay, F. Sahli, T.C.-J. Yang, M. Bräuninger, G. Christmann, A. Walter, B.A. Kamino, P. Fiala, P. Löper, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, ACS Energy Lett. 3, 742 (2018)
C.-H. Chiang, C.-G. Wu, ACS Nano 12, 10355 (2018)
Y. Wang, Y. Liang, Y. Zhang, W. Yang, L. Sun, D. Xu, Adv. Funct. Mater. 28, 1801237 (2018)
Acknowledgements
We acknowledge the Universiti Kebangsaan Malaysia, Malaysia for financial support through the Long-term Research Grant Scheme (LRGS/1/2019/ UKM-UKM/6/1). The work is partly supported by the Bangabandhu Fellowship Trust (BBFT), Bangladesh. The authors extend their appreciation for funding to Researchers Supporting Project number (RSP-2021/34), King Saud University, Riyadh, Saudi Arabia. We also acknowledge the Bangladesh Council of Scientific and Industrial Research for supporting using their experimental laboratories.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
There are no conflicts of interest to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mahjabin, S., Hossain, M.I., Haque, M.M. et al. Sputtered WOx thin film as the electron transport layer for efficient perovskite solar cells. Appl. Phys. A 128, 358 (2022). https://doi.org/10.1007/s00339-022-05500-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-022-05500-5
Keywords
- WOx thin film
- Electron transport layer
- Magnetron sputtering
- Perovskite solar cell optics
- FDTD